ECONOMETRIC MODELING OF MACROECONOMIC DETERMINANTS OF STOCK MARKET VOLATILITY IN INDIA WITH SPECIAL REFERENCE TO NSEIL

Swami Prasad Saxena

Dayalbagh Educational Institute Dayalbagh, Agra, Uttar Pradesh e-mail: spsaxena@dei.ac.in

Sonam Bhadauriya

Himalayan School of Management Swami Rama Himalayan University Dehradun, Uttarakhand e-mail: sbhadauriya@live.in

ABSTRACT

Modeling and forecasting volatility of a financial time series has become a very prominent area for research last few years. These models provide precise estimate of conditional variance process and make a good forecast of future volatility that may help the stakeholders in obtaining efficient portfolio and accurate derivative prices of financial instruments. This paper aims at developing an econometric model for predicting stock market variability affected due to variations in the macroeconomic indicators. This paper considered twelve years' monthly data of Returns of Monthly Averages of S&P CNX Nifty (NRTS) as dependent variable and fifteen independent macroeconomic variables selected from different segments of economy. In the process, variables as described in the econometric function for stock market returns at NSE are first tested for unit root and stationary and then causal links among dependent and independent variables are explored by using Granger causality in bi-variate and multivariate VAR framework. The Multivariate GARCH models developed for predicting NRTS affected due to variations in various sets of macroeconomic variables indicate that though these models are capable of measuring the impact of changes in one/ set of series on the other series of same amplitude, but, are suitable in short period only.

Keywords: Stock market volatility, Macroeconomic determinants, Econometric modeling, VAR frameworks, DCC MGARCH model

INTRODUCTION

Volatility is a symptom and an integral part of a highly liquid stock market alternating bull and bear phases. Investors interpret a rise in stock market volatility as an increase in the risk of equity investment and consequently they shift their funds to less risky assets. The issues of volatility and risk have become more important in recent times for financial practitioners, market participants, regulators, policy makers and researchers. The volatility of stock market indicators goes beyond anyone's reasonable explanations. Industry performances, economic and political changes are among the major factors that can affect the stock market behavior. Stock market volatility, in general, is affected by both micro and macro variables. Micro variables include corporate results announcements, business life cycles, business risk, financial Leverage etc., and macro variables, the indicators of country's economy, primarily include gross domestic product, inflation rate, interest rate, exchange rate, petroleum and gold prices, forex reserves, stock trading volume, foreign institutional investment etc. Economists view that though stock performance of a particular company is influenced by micro variables, the macro variables drop impact on the whole stock market behavior.

The relationship between macroeconomic variables and stock market returns by now, is well documented in literature. A significant research has been done to investigate the relationship between stock market returns and a range of macroeconomic variables across a number of stock markets in different time horizons. Bhattacharya and Mukherjee (2001,2006) investigated causal relationship between stock indices (BSE Sensex) and selected macroeconomic variables, viz., money supply, index of industrial production, national income, inflation rate, real effective exchange rate, foreign exchange reserves and trade balance. They found no evidence of causal linkages between stock returns and the macroeconomic variables under consideration. Kumar (2009) in a study conducted on return at NSE observed a causal linkage between FII and stock returns. He however mentioned that there exists no long-run equilibrium relationship between stock returns. Corradi, Distaso and Mele (2009) and Ali et al. (2010) also rejected the hypotheses of causal relation between selected macroeconomic indicators and stock returns at KSE, Pakistan. Kumar and Puja (2012) discovered that macroeconomic variables and the stock market indices are cointegrated and, hence, there exists long-run equilibrium relationship between them.

Sharma and Mahendru (2010) developed regression model to analyze long term relationship between selected macroeconomic variables and stock prices at BSE, India. They observed highly significant impact of exchange rates and gold prices and very limited impact of forex reserves and inflation on stock prices. Maysami, Howe and Hamzah (2004) in a study indicated that Singapore stock market form cointegrating relationship with changes in the short and long-term interest rates, industrial production, price levels, exchange rates, and money supply. Adam and Tweneboah (2008) also, in similar way observed long run cointegrating relationship between selected macroeconomic variable and Stock return in Ghana. Flad (2006) and Humpe and Macmillan (2007) also observed that macroeconomic factors help to forecast

volatility of stock returns. Diebold and Yilmaz (2008) in a study conducted cross section analysis of stock market returns in forty four countries observed clear link between macroeconomic fundamentals and stock market volatilities. Asaolu and Ogunmuyiwa (2011) also investigated impact of macroeconomic variables on Average stock prices and observed weak relationship between average share prices and macroeconomic variables in Nigeria. To encapsulate, a number of studies found evidences of causal relationship between macroeconomic variables and stock market performance, while some rejected the hypotheses of relationship between these variables. Thus, the findings of studies are not substantial in relationship drawing exact between diverse macroeconomic variables and stock prices. This entails identification of a set of macroeconomic variables that can be used for modeling stock market volatility.

To discover and analyze causal relations and dynamic interactions between macroeconomic variables and stock market performance and to forecast stock market indices, many researchers in the past used regression methods and ARIMA models. But, they failed to produce accurate forecast because of nonlinearity in data series and inherent limitations of modeling techniques. This paper is an attempt to develop an econometric model for predicting stock market variability affected due to variations in the macroeconomic indicators. It considered twelve years' monthly data spanning from 1999-00 to 2010-11 on daily return of S&P CNX Nifty as dependent variable and fifteen independent macroeconomic variables grouped into five major categories, viz. real economy indicators, forex market indicators, money market indicators, stock market indicators and commodity market indicators (table 1). The paper is divided into five sections. Section one is concerned with theoretical foundations and review of literature, section two is about econometric methodologies and model specifications. It discusses issues related with confirmation of the stationarity of time series data through ADF unit root test, lag order selection, checking of the interdependence of macroeconomic determinants and the stock market volatility via Granger Causality test after declaring the variables in bi-variate and multivariate Vector Auto Regression GARCH (VAR) frameworks, modeling and estimation through DCC MGARCH model. Section three portrays analysis and findings, section four is concerned with estimation of stock market behavior via DCC MGARCH model, and section five concludes the paper. The analysis of data is done by using STATA (SE 12.0).

Depe	endent Va	riable	Data Source				
	NRTS	Log. Returns of Monthly Averages of S&P CNX NIFTY	dbie.rbi.org.in				
		(Base: November 3, 1995 = 1000)					
	(A) Real	Economy Indicators					
	GDP	GDP at Factor Cost: Current Prices- Rs. Crore (Base: 2004-05)	dbie.rbi.org.in				
	IIP	Monthly Index of Industrial Production (Base: 1993-94=100)	dbie.rbi.org.in				
	WPI	Wholesale Price Index: Monthly Avg. (Base: 2004-05=100)	dbie.rbi.org.in				
	(B) Fore	ex Market Indicators					
	BOP	India's Overall Balance of Payments: Quarterly (Rs. Crore)	dbie.rbi.org.in				
s	FXRE	Monthly Foreign Exchange Reserves (Rs. Crore)	dbie.rbi.org.in				
ıble	FXRA	Monthly Average of Exch. Rate of INR (Rs. per unit of USD)	dbie.rbi.org.in				
Independent Variables	(C) Money Market Indicators						
>	RPR	Repo Rate	dbie.rbi.org.in				
ent	TBR	Monthly Avg. of Implicit Yield at Cut-off Price: 91 Day T Bills	dbie.rbi.org.in				
pue	PLR	Prime Lending Rate (SBAR: State Bank Advance Rate)	in.reuters.com				
lepe	(D) Stock Market Indicators						
Ind	FII	Monthly Net Investment by FIIs in the India (Rs. Crore)	dbie.rbi.org.in				
	TRV	Monthly Traded Volume in Corp. Debt at NSE (Rs. Crore)	dbie.rbi.org.in				
	MCP	Monthly Market Capitalization-NSE (Rs. Crore)	dbie.rbi.org.in				
	(E) Commodity Market Indicators						
	CRO	Monthly Cushing, OK WTI Spot Price FOB (USD per Barrel)	eia.gov				
	GLD	Monthly Avg. of Gold Prices: Mumbai (Rs. per 10 Gm.)	dbie.rbi.org.in				
	SLV	Monthly Avg. of Silver Prices: Mumbai (Rs. per Kg.)	dbie.rbi.org.in				

Econometric Modeling Methodology

The econometricians have mentioned three phases of econometric models. These are specification, estimation and prediction. Model specification hypothesizes that the dependent variable **Y** is linearly related to the explanatory variable **X** (Gujarati, 2004). Based on variables considered in present study (table 1), the econometric function for stock market returns at NSE can be specified as: NRTS₁= $\beta_0+\beta_1$ GDP₁+ β_3 IIP₁+ β_4 BOP₁+ β_5 FXRE₄+ β_6 FXRA₄+ β_7 RPR₁+ β_8 TBR₁+ β_9 PLR₄

 $+\beta_{10}FII_t+\beta_{11}TRV_t+\beta_{12}MCP_t+\beta_{13}CRO_t+\beta_{14}GLD_t+\beta_{15}SLV_t+\epsilon_t$

Econometric methodology states that before using time series data for further investigation it must be tested for unit root and stationary. To confirm the stationarity of data series by identifying the appropriate level of differencing and declaring the order of integration, ADF unit root test is employed. The basic equation of ADF unit root test is:

$$\Delta X_t = \beta_1 + \beta_2 t + \beta_3 X_{t-1} + \sum_{i=1}^p \alpha_i \Delta X_{t-i} + \epsilon_t$$

Here, $\boldsymbol{\varepsilon}_{t}$ is pure white noise error term, p is maximum length of the lagged dependent variable, and $\boldsymbol{\alpha}_{i}$ is the parameter of lagged first. The test results (table 2) indicate that NRTS and FII are stationary at I(0), SLV is stationary at I(2) and all other variables are stationary at I(1).

For fitting a VAR of the correct order four lag order selection criterions are common. Among these Final Prediction Error (FPE) is not an information criterion. However, it is included as an information criterion to minimize the prediction error. The Akaike Information Criterion (AIC) measures the discrepancy between the given model and the true model, which, in principle should be minimum.

Table 2: ADF Unit Root Test Results

S.	Variables	T-	P-		
No.		Lag Order	Order of Integration	Statistics	Value
1.	NRTS	3	I(0)	-5.537	0.000*
	GDP	1	I(0)	1.753	0.998
2.	DGDP	3	I(1)	-5.513	0.000*
2	IIP	4	I(0)	0.879	0.992
3.	DIIP	3	I(1)	-5.533	0.000*
4	WPI	4	I(0)	1.889	0.998
4.	DWPI	4	I(1)	-5.332	0.000*
5.	BOP	4	I(0)	-3.026	0.032
5.	DBOP	3	I(1)	-7.283	0.000*
6.	FXRE	4	I(0)	-0.024	0.956
0.	DFXRE	3	I(1)	-4.871	0.000*
7.	FXRA	2	I(0)	-2.183	0.212
7.	DFXRA	1	I(1)	-7.669	0.000*
8.	RPR	3	I(0)	-2.123	0.235
0.	DRPR	2	I(1)	-7.873	0.000*
9.	TBR	1	I(0)	-1.980	0.295
9.	DTBR	1	I(1)	-7.774	0.000*
10.	PLR	3	I(0)	-1.440	0.562
10.	DPLR	2	I(1)	-6.354	0.000*
11.	FII	1	I(0)	-5.859	0.000*
12.	TRV	2	I(0)	-1.237	0.657
12.	DTRV	1	I(1)	-12.120	0.000*
13.	MCP	1	I(0)	0.090	0.965
13.	DMCP	0	I(1)	-11.445	0.000*
14.	CRO	3	I(0)	-1.677	0.443
14.	DCRO	2	I(1)	-5.172	0.000*
15.	GLD	1	I(0)	2.560	0.999
15.	DGLD	0	I(1)	-11.433	0.000*

	SLV	4	I(0)	2.669	0.999				
16.	DSLV	4	I(1)	-2.596	0.093				
	DDSLV	3	I(2)	-8.484	0.000*				
Notos									

Notes:

- (i) Variable labels without any prefix are stationary at their own level, I(0); labels prefixed with D are stationary after differencing once, I(1); and the variables prefixed with DD are stationary after differencing twice, I(2).
- (ii) * denotes rejection of null hypothesis at 99% confidence level.

(iii) The respective critical value is -3.497.

(vi) Akaike Information Criterion is used for lag order selection.

The Hannan-Quinn Information Criterion (HQIC) and Schwarz's Bayesian Information Criterion (SBIC) are also interpreted similar to the AIC. The model form of log likelihood (LL) for VAR is:

$$LL = \left(\frac{T}{2}\right) \left\{ \ln\left(\left|\widehat{\Sigma}^{-1}\right|\right) - K \ln(2\pi) - K \right\}$$

Here, T is number of observations, K is number of equations, and $\widehat{\Sigma}$ is the maximum likelihood estimate denoted as $\mathbf{E}[\mathbf{u_t}\mathbf{u'_t}]$. In this, $\mathbf{u_t}$ is the $\mathbf{K} \times \mathbf{1}$ vector of disturbances. The results of VAR lag order selection based on all the four criterions (table 3) show maximum value of log likelihood for four lags, thus it selects the model with four lags. The minimum value based information viz., FPE and AIC also confirm the lag order of four for the VAR estimation. But SBIC and HQIC chose a model with two lags. This paper considered lag order of four for further estimation as it is also supported by the likelihood ratio test.

Table 3:	VAR Lag	Order	Selection	Criteria
I ubic of	TILL LING	Oraci	Delection	Criteria

Lag	LL	LR	DF	Sig.	FPE	AIC	SBIC	HQIC			
0	-14270.3				0.000	204.091	204.227	204.427			
1	-12215.7	4109.2	256	0.000	0.000	178.396	180.719*	184.112*			
2	-11881.1	669.19	256	0.000	0.000	177.274	181.782	188.368			
3	-11493.8	774.61	256	0.000	0.000	175.398	182.092	191.871			
4	-11168.1	651.44*	256	0.000	0.000*	174.402*	183.282	196.254			
Notes: *	indicates lag o	Notes: * indicates lag order selected by the criterion.									

The causal relationship between stock market volatility and selected macroeconomic determinants, and also the relationship among selected macroeconomic determinants is traced using Granger causality test proposed by Granger (1969) in the Vector Auto Regression (VAR) framework.

Granger Causality test assumes that variables under consideration are stationary. If the time series has unit root or unit roots in it, then it should be differenced once or twice or more for following the stationary process. The mathematical form of Granger Causality test in a bi-variate autoregressive framework is as follows.

$$\begin{split} X(t) &= \sum_{j=1}^p A_{11,j} X(t-j) + \sum_{j=1}^p A_{12,j} Y(t-j) + \epsilon_1(t) \\ Y(t) &= \sum_{j=1}^p A_{21,j} X(t-j) + \sum_{j=1}^p A_{22,j} Y(t-j) + \epsilon_2(t) \end{split}$$

Here, X and Y are the variables, p is the maximum length of the lagged observations, A is the matrix that contains coefficients of the model, and ε_1 and ε_2 are the prediction errors.

Vector Auto-regression (VAR) models, used for forecasting and also for analyzing causal relationship among economic time series variables, are multiequation systems in which all the variables are treated as endogenous variable. The use of VARs for causal inferences is known as structural modeling. Mathematically, in a VAR model, each of the endogenous variables is explained by its lagged or past values and the lagged values of other endogenous variables in the model. A bi-variate VAR model for X and Y variables can be formulated as:

$$\begin{split} \mathbf{X}_{t} &= \mathbf{A}_{0} + \mathbf{A}_{1}\mathbf{X}_{t-1} + \mathbf{A}_{2}\mathbf{X}_{t-2} \dots \mathbf{A}_{p}\mathbf{X}_{t-p} + \mathbf{A}_{1}\mathbf{Y}_{t-1} + \mathbf{A}_{2}\mathbf{Y}_{t-2} \dots \mathbf{A}_{p}\mathbf{Y}_{t-p} + \mathbf{u}_{t} \\ \mathbf{Y}_{t} &= \mathbf{A}_{0} + \mathbf{A}_{1}\mathbf{X}_{t-1} + \mathbf{A}_{2}\mathbf{X}_{t-2} \dots \mathbf{A}_{p}\mathbf{X}_{t-p} + \mathbf{A}_{1}\mathbf{Y}_{t-1} + \mathbf{A}_{2}\mathbf{Y}_{t-2} \dots \mathbf{A}_{p}\mathbf{Y}_{t-p} + \mathbf{u}_{t} \end{split}$$

Here, A_o is a vector of constant terms, A_p is the matrices of constants to be estimated, \mathbf{u}_t is a vector of residuals and assumed to be white noise and p is the lag length. With the same notations, a multivariate VAR model for the variables X, Y and Z can be framed as:

$$\begin{split} & X_t = & A_0 + A_1 X_{t\cdot 1} + A_2 X_{t\cdot 2} \dots A_p X_{t\cdot p} + A_1 Y_{t\cdot 1} + A_2 Y_{t\cdot 2} \dots A_p Y_{t\cdot p} + A_1 Z_{t\cdot 1} + A_2 Z_{t\cdot 2} \dots A_p Z_{t\cdot p} + u_t \\ & Y_t = & A_0 + A_1 X_{t\cdot 1} + A_2 X_{t\cdot 2} \dots A_p X_{t\cdot p} + A_1 Y_{t\cdot 1} + A_2 Y_{t\cdot 2} \dots A_p Y_{t\cdot p} + A_1 Z_{t\cdot 1} + A_2 Z_{t\cdot 2} \dots A_p Z_{t\cdot p} + u_t \\ & Z_t = & A_0 + A_1 X_{t\cdot 1} + A_2 X_{t\cdot 2} \dots A_p X_{t\cdot p} + A_1 Y_{t\cdot 1} + A_2 Y_{t\cdot 2} \dots A_p Y_{t\cdot p} + A_1 Z_{t\cdot 1} + A_2 Z_{t\cdot 2} \dots A_p Z_{t\cdot p} + u_t \end{split}$$

In a VAR model no contemporaneous variables as explanatory are included on the right-hand side, thus all the equations have same form since they share the same right-hand side. In a VAR equation all the included variables are treated as endogenous and depend on all the others.

The VAR models can be used for forecasting, but not for structural analysis and policy evaluation. Thus, an analytical research requires further test such as Granger Causality and models such as Multi-variate GARCH for identifying the proper sensitivity among the variables. To delve deeper into the association of macroeconomic environment of the country and stock market performance, the study used Generalized ARCH (GARCH) models. These models are considered efficient for modeling the volatility of financial assets (Francq and Zakoian, 2010). The newly developed Multivariate GARCH (MGARCH) models allow the conditional covariance matrix of the dependent variables to follow a flexible dynamic structure. They also allow the conditional mean to follow a VAR structure. MGARCH implements four commonly used parameterizations viz., the Diagonal Vech (DVECH) model, the Constant Conditional Correlation (CCC) model, the Dynamic Conditional Correlation (DCC) model, and the Varying Conditional Correlation (VCC) model. The general form of MGARCH model is written as:

$$y_t = Cx_t + \epsilon_t$$
, and $\epsilon_t = H_t^{1/2}v_t$

Here, \mathbf{y}_{t} is an m \times 1 vector of dependent variables, **C** is an m \times k matrix of parameters, \mathbf{x}_t is a k \times 1 vector of independent variables which may contain lags of y_t . $H_t^{1/2}$ is the Cholesky factor of the time-varying conditional covariance matrix \mathbf{H}_{t} , and \mathbf{v}_{t} is an m \times 1 vector of zero-mean, unit variance, and independent and identically distributed innovations. Various MGARCH models proposed in the literature differ in how they trade off flexibility and parsimony in their specifications for H_t (matrix generalization of univariate GARCH models). Increased flexibility allows a model to capture more complex H₊ processes and increased parsimony makes parameter estimation feasible for more data sets. An important measure of the flexibility parsimony trade-off is how fast the number of model parameters increases with the number of time series m.

The DVECH MGARCH models (Bollerslev, Engle and Wooldridge, 1988), despite large number of parameters and diagonal structure implies that each conditional variance and each conditional covariance depends on its own past but not on the past of the other conditional variances and co-variances. Conditional Correlation MGARCH (CCMGARCH) models use nonlinear combinations of uni-variate GARCH models to represent the conditional covariances. In each of the conditional correlation models, the conditional co-variance matrix is positive definite by construction and has a simple structure parameter which facilitates estimation. In CCMGARCH models, H_t is decomposed into a matrix of conditional correlations R_t and a diagonal matrix of conditional variancesD₊. The basic CC MGARCH model is written as:

$$H_t = D_t^{1/2} R_t D_t^{1/2}$$

In the above equation, each conditional variance follows a uni-variate GARCH process and the

parameterizations of R_t vary across models. There are three CC models implemented in MGARCH which differ in a way that how they parameterize R_t . These are as follows.

- Constant Conditional Correlation MGARCH Model: The model was proposed by Bollerslev in 1990. In this model the correlation matrix is time invariant. The model restricts R_t to a constant matrix, reduces the number of parameters, and simplifies the estimation. But, it may be too strict in many empirical applications.
- Dynamic Conditional Correlation MGARCH Model: In DCCMGARCH model (Engle, 2002) the conditional quasi correlations R_t follow a GARCH (1,1) process. To preserve parsimony, the model restricts all the conditional quasi correlations to follow the same dynamics. The DCC model is more flexible than the CCC model without introducing an inestimable number of parameters for a reasonable number of series.
- Varying Conditional Correlation MGARCH Model: In VCCMGARCH model (Tse and Tsui, 2002) the conditional correlations at each period are weighted sum of a time-invariant component, a measure of recent correlations among the residuals, and last period's conditional correlations. The model, for parsimony restricts all the conditional correlations to follow the same dynamics.

To develop a model for predicting the volatility of NRTS caused due to selected macroeconomic determinants, the study used DCC MGARCH model because it is as flexible as VCC MGARCH model, more flexible than CCC, and more parsimonious than the DVECH MGARCH model. In DCC MGARCH models, conditional variances are modeled as univariate GARCH models and the conditional covariances are modeled as nonlinear functions of the conditional variances. The conditional guasi correlation parameters that weight the nonlinear combinations of the conditional variances follow the GARCH-like process (Engle, 2002). MGARCH models are dynamic multivariate regression models in which the conditional variances and co-variances of the errors follow an autoregressive-moving-average structure. MGARCH models differ in the parsimony and flexibility of their specifications for a timevarying conditional covariance matrix of the disturbances, denoted by H₊. In a DCC MGARCH model:

$$\mathbf{h}_{ij,t} = \mathbf{p}_{ij,t} \sqrt{\mathbf{h}_{ii,t} \mathbf{h}_{jj,t}}$$

Here, the diagonal elements $h_{ii,t}$ and $h_{jj,t}$ follow univariate GARCH processes and $p_{ij,t}$, t follows the dynamic process. As in $p_{ij,t}$, t varies with time, the model is popularized as the Dynamic Conditional

Correlation MGARCH model. The basic DCC MGARCH model proposed by Engle (2002) can be written as:

$$y_{t} = Cx_{t} + \epsilon_{t}, \epsilon_{t} = H_{t}^{1/2}v_{t}, H_{t} = D_{t}^{1/2}R_{t},$$

$$R_{t} = diag(Q_{t})^{-1/2}Q_{t}diag(Q_{t})^{-1/2}, and$$

$$Q_{t} = (1 - \lambda_{1} - \lambda_{2})R + \lambda_{1}\tilde{\epsilon}_{t-1}\tilde{\epsilon}'_{t-1} + \lambda_{2}Q_{t-1}$$

In the above equations, y_t is an $m \times 1$ vector of dependent variables; C is a $m \times k$ matrix of parameters; X_t is a $k \times 1$ vector of independent variables, which may contain lags of y_t ; $H_t^{1/2}$ is the Cholesky factor of the time-varying conditional covariance matrix H_t ; v_t is an $m \times 1$ vector of normal, independent and identically distributed innovations; D_t is a diagonal matrix of conditional variances; and R_t is a matrix of conditional quasi correlations. $\tilde{\boldsymbol{\varepsilon}}_t$ is an $m \times 1$ vector of standardized residuals, $D_t^{-1/2} \boldsymbol{\epsilon}_t$; λ_1 and λ_2 are parameters that govern the dynamics of conditional quasi correlations (these are non-negative

and satisfy $0 \le \lambda_1 + \lambda_2 < 1$; and Q_t is the stationary time series. The DCC MGARCH model reduces to the CCC MGARCH model, if $\lambda_1 = \lambda_2 = 0$.

RESULTS AND DISCUSSION

To explore the existence of causality/ exogeneity between Returns of Monthly Averages of S&P CNX NIFTY (NRTS) and the selected macroeconomic variables selected from different segments of economy (the real economy indicators, forex market indicators, money market indicators, stock market indicators and commodity market indicators) the Granger causality test in a bivariate VAR framework is applied. The test results explored in bi-variate VAR framework at 5 percent level of significance (table 4 and 5) indicate that DMCP and NRTS, and NRTS and DRPR have unidirectional causality and a bidirectional causal relationship is observed between DBOP and NRTS. All the other variables under study have no causal relation with NRTS.

S. No.	Null Hypothesis	F-Stat.	P- Value	H _O Rejected/Not Rejected	Causality Inference			
1	NRTS doesn't Granger cause to DGDP	1.019	0.399	H_0 Not Rejected				
2	DGDP doesn't Granger cause to NRTS	0.912	0.458	H ₀ Not Rejected	Exogeneity			
3	NRTS doesn't Granger cause to DIIP	0.968	0.427	H ₀ Not Rejected				
4	DIIP doesn't Granger cause to NRTS	0.046	0.995	H ₀ Not Rejected	Exogeneity			
5	NRTS doesn't Granger cause to DWPI	1.637	0.168	H ₀ Not Rejected	F			
6	DWPI doesn't Granger cause to NRTS	1.521	0.199	H ₀ Not Rejected	Exogeneity			
7	NRTS doesn't Granger cause to DBOP	2.932	0.023*	H ₀ Rejected	Bidirectional Causality			
8	DBOP doesn't Granger cause to NRTS	2.372	0.050*	H _O Rejected	Feedback			
9	NRTS doesn't Granger cause to DFXRE	1.823	0.128	H ₀ Not Rejected	Б [.] .			
10	DFXRE doesn't Granger cause to NRTS	1.316	0.267	H ₀ Not Rejected	Exogeneity			
11	NRTS doesn't Granger cause to DFXRA	1.207	0.310	Ho Not Rejected	F '/			
12	DFXRA doesn't Granger cause to NRTS	1.110	0.354	Ho Not Rejected	Exogeneity			
13	NRTS doesn't Granger cause to DRPR	3.702	0.006*	H _o Rejected	Unidirectional Causality			
14	DRPR doesn't Granger cause to NRTS	1.846	0.123	H ₀ Not Rejected	NRTS→DRPR			
15	NRTS doesn't Granger cause to DTBR	1.444	0.223	H _O Not Rejected	Encourt			
16	DTBR doesn't Granger cause to NRTS	2.045	0.091	H _O Not Rejected	Exogeneity			
17	NRTS doesn't Granger cause to DPLR	0.498	0.736	Ho Not Rejected	Eucompity			
18	DPLR doesn't Granger cause to NRTS	1.128	0.345	Ho Not Rejected	Exogeneity			
19	NRTS doesn't Granger cause to FII	0.649	0.628	H _O Not Rejected	E			
20	FII doesn't Granger cause to NRTS	2.096	0.084	H _O Not Rejected	Exogeneity			
21	NRTS doesn't Granger cause to DTRV	0.292	0.882	Ho Not Rejected	Evenentity			
22	DTRV doesn't Granger cause to NRTS	0.674	0.610	Ho Not Rejected	Exogeneity			
23	NRTS doesn't Granger cause to DMCP	0.729	0.573	Ho Not Rejected	Unidirectional Causality			
24	DMCP doesn't Granger cause to NRTS	9.236	0.000*	H _O Rejected	DMCP→NRTS			
25	NRTS doesn't Granger cause to DCRO	1.387	0.241	Ho Not Rejected	Exogeneity			
26	DCRO doesn't Granger cause to NRTS	1.596	0.179	Ho Not Rejected	Exogeneity			
27	NRTS doesn't Granger cause to DGLD	0.459	0.765	Ho Not Rejected	Exogeneity			
28	DGLD doesn't Granger cause to NRTS	0.851	0.494	H _O Not Rejected	Exogeneny			
29	NRTS doesn't Granger cause to DDSLV	0.230	0.921	H _O Not Rejected	Exogeneity			
30	DDSLV doesn't Granger cause to NRTS	0.100	0.982	H _O Not Rejected	Exogeneny			
Notes	: (i) [*] denotes rejection of null hypothesis a		nfidence lev	el.				
	(ii) No. of Observations: 140 for all the hypotheses.							

Table 4: Granger Causality Test for NRTS and Selected Indicators in Bivariate Framework

1 2 3 4 5 6 7 8 9 10 11 12	<pre>ition No. NRTSt DGDPt NRTSt DIIPt NRTSt DWPIt NRTSt DWPIt NRTSt NRTSt DBOPt NRTSt NRTSt NRTSt</pre>	$\begin{tabular}{ c c c c c } \hline NRTS_{t-1} & 0.423 & (0.000) \\ \hline 0.423 & (0.000) & 81735.59 & (0.159) & NRTS_{t-1} & 0.425 & (0.000) & 19.153 & (0.232) & NRTS_{t-1} & 0.423 & (0.000) & 1.050 & (0.240) & NRTS_{t-1} & 0.377 & (0.000) & 87385.92 & (0.001) & NRTS_{t-1} & 0.449 & (0.000) & 52491.59 & (0.075) & (0.75) & (0.75) & (0.75) & (0.075) & (0.075) & (0.075) & (0.000) & (0.232) & (0.001) & (0.000) & (0.240) & (0.075) & (0.075) & (0.075) & (0.000) & ($	$\begin{array}{r} \label{eq:result} $$ NRTS_{t-2}$ \\ -0.239 \\ (0.007) \\ 4737.621 \\ (0.940) \\ NRTS_{t-2}$ \\ -0.255 \\ (0.004) \\ -9.795 \\ (0.570) \\ NRTS_{t-2}$ \\ -0.239 \\ (0.007) \\ 1.154 \\ (0.228) \\ NRTS_{t-2}$ \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ NRTS_{t-2}$ \\ -0.220 \\ (0.015) \\ \end{array}$	NRTS ₁₋₃ 0.219 (0.013) 76178.45 (0.217) NRTS ₁₋₃ 0.236 (0.007) 29.568 (0.083) NRTS ₁₋₃ 0.232 (0.008) 0.609 (0.521) NRTS ₁₋₃ 0.203 (0.019) 10800.92 (0.683) NRTS ₁₋₃	$\begin{array}{r} \textbf{NRTS}_{t4} \\ \hline -0.102 \\ (0.216) \\ \hline -56787.43 \\ (0.331) \\ \textbf{NRTS}_{t4} \\ \hline -0.110 \\ (0.192) \\ \hline -5.701 \\ (0.726) \\ \textbf{NRTS}_{t4} \\ \hline -0.123 \\ (0.140) \\ \hline 0.551 \\ (0.542) \\ \textbf{NRTS}_{t4} \\ \hline -0.142 \\ (0.081) \\ \hline -17486.41 \\ \end{array}$	$\begin{array}{c} \hline \textbf{DGDP}_{t-1} \\ 0.000 \\ (0.531) \\ -0.053 \\ (0.524) \\ \hline \textbf{DIIP}_{t-1} \\ 0.000 \\ (0.720) \\ -0.684 \\ (0.000) \\ \hline \textbf{DWPI}_{t-1} \\ -0.004 \\ (0.544) \\ 0.320 \\ (0.000) \\ \hline \textbf{DBOP}_{t-1} \\ \hline \textbf{0}.000 \\ (0.002) \\ \end{array}$	$\begin{tabular}{ c c c c } \hline DGDP_{t-2} \\\hline 0.000 \\\hline (0.361) \\\hline -0.069 \\\hline (0.397) \\\hline DIIP_{t-2} \\\hline 0.000 \\\hline (0.987) \\\hline -0.161 \\\hline (0.126) \\\hline DWPI_{t-2} \\\hline 0.000 \\\hline (0.911) \\\hline 0.060 \\\hline (0.470) \\\hline DBOP_{t-2} \\\hline 0.000 \end{tabular}$	$\begin{array}{c} \textbf{DGDP}_{t\!-\!3} \\ -0.000 \\ (0.618) \\ 0.185 \\ (0.030) \\ \textbf{DIIP}_{t\!-\!3} \\ -0.000 \\ (0.996) \\ 0.197 \\ (0.063) \\ \textbf{DWPI}_{t\!-\!3} \\ 0.009 \\ (0.235) \\ 0.303 \\ (0.000) \\ \textbf{DBOP}_{t\!-\!3} \end{array}$	$\begin{array}{c} \hline \textbf{DGDP}_{t-4} \\ -0.000 \\ (0.109) \\ -0.047 \\ (0.576) \\ \hline \textbf{DIIP}_{t-4} \\ 0.000 \\ (0.957) \\ 0.051 \\ (0.573) \\ \hline \textbf{DWPI}_{t-4} \\ -0.017 \\ (0.026) \\ -0.267 \\ (0.001) \\ \hline \textbf{DBOP}_{t-4} \end{array}$	Constant 0.007 (0.187) 10216.09 (0.012) Constant 0.006 (0.224) 2.260 (0.037) Constant 0.012 (0.078) 0.259 (0.001) Constant
2 3 4 5 6 7 8 9 10 11 12	DGDPt NRTSt DIIPt NRTSt DWPIt DWPIt DWPIt DBOPt DBOPt DBOPt	$\begin{array}{c} (0.000) \\ 81735.59 \\ (0.159) \\ NRTS_{\iota1} \\ 0.425 \\ (0.000) \\ 19.153 \\ (0.232) \\ NRTS_{\iota1} \\ 0.423 \\ (0.000) \\ 1.050 \\ (0.240) \\ NRTS_{\iota1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ NRTS_{\iota1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	$\begin{array}{c} (0.007) \\ 4737.621 \\ (0.940) \\ NRTS_{t\cdot 2} \\ -0.255 \\ (0.004) \\ -9.795 \\ (0.570) \\ NRTS_{t\cdot 2} \\ -0.239 \\ (0.007) \\ 1.154 \\ (0.228) \\ NRTS_{t\cdot 2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ NRTS_{t\cdot 2} \\ -0.220 \end{array}$	(0.013) 76178.45 (0.217) NRTS ₁₋₃ 0.236 (0.007) 29.568 (0.083) NRTS ₁₋₃ 0.232 (0.008) 0.609 (0.521) NRTS ₂₋₃ 0.203 (0.019) 10800.92 (0.683)	$\begin{array}{c} (0.216) \\ -56787.43 \\ (0.331) \\ \\ NRTS_{t4} \\ -0.110 \\ (0.192) \\ -5.701 \\ (0.726) \\ \\ NRTS_{t4} \\ -0.123 \\ (0.140) \\ \\ 0.551 \\ (0.542) \\ \\ NRTS_{t4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	$\begin{array}{c} (0.531) \\ -0.053 \\ (0.524) \\ DIIP_{t-1} \\ 0.000 \\ (0.720) \\ -0.684 \\ (0.000) \\ DWPI_{t-1} \\ -0.004 \\ (0.544) \\ 0.320 \\ (0.000) \\ DBOP_{t-1} \\ 0.000 \end{array}$	$\begin{array}{c} (0.361) \\ -0.069 \\ (0.397) \\ \hline DIIP_{t-2} \\ 0.000 \\ (0.987) \\ -0.161 \\ (0.126) \\ \hline DWPI_{t-2} \\ 0.000 \\ (0.911) \\ 0.060 \\ (0.470) \\ \hline DBOP_{t-2} \end{array}$	$\begin{array}{c} (0.618) \\ \hline 0.185 \\ (0.030) \\ \hline DIIP_{\iota_3} \\ -0.000 \\ (0.996) \\ \hline 0.197 \\ (0.063) \\ \hline DWPI_{\iota_3} \\ 0.009 \\ (0.235) \\ \hline 0.303 \\ (0.000) \\ \hline DBOP_{\iota_3} \end{array}$	$\begin{array}{c} (0.109) \\ -0.047 \\ (0.576) \\ \hline DIIP_{t-4} \\ 0.000 \\ (0.957) \\ 0.051 \\ (0.573) \\ \hline DWPI_{t-4} \\ -0.017 \\ (0.026) \\ -0.267 \\ (0.001) \\ \hline DBOP_{t-4} \end{array}$	(0.187) 10216.09 (0.012) Constant 0.006 (0.224) 2.260 (0.037) Constant 0.012 (0.078) 0.259 (0.001)
2 3 4 5 6 7 8 9 10 11 12	DGDPt NRTSt DIIPt NRTSt DWPIt DWPIt DWPIt DBOPt DBOPt DBOPt	$\begin{array}{c} 81735.59\\ (0.159)\\ \hline NRTS_{t-1}\\ 0.425\\ (0.000)\\ \hline 19.153\\ (0.232)\\ \hline NRTS_{t-1}\\ 0.423\\ (0.000)\\ \hline 1.050\\ (0.240)\\ \hline NRTS_{t-1}\\ 0.377\\ (0.000)\\ \hline 87385.92\\ (0.001)\\ \hline NRTS_{t-1}\\ 0.449\\ (0.000)\\ \hline 52491.59\\ \end{array}$	$\begin{array}{r} 4737.621 \\ (0.940) \\ \hline NRTS_{b2} \\ -0.255 \\ (0.004) \\ -9.795 \\ (0.570) \\ \hline NRTS_{b2} \\ -0.239 \\ (0.007) \\ 1.154 \\ (0.228) \\ \hline NRTS_{b2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ \hline NRTS_{b2} \\ -0.220 \end{array}$	$\begin{array}{c} 76178.45\\ (0.217)\\ \hline NRTS_{L3}\\ 0.236\\ (0.007)\\ 29.568\\ (0.083)\\ \hline NRTS_{L3}\\ 0.232\\ (0.008)\\ 0.609\\ (0.521)\\ \hline NRTS_{L3}\\ 0.203\\ (0.019)\\ \hline 10800.92\\ (0.683)\\ \end{array}$	$\begin{array}{r} -56787.43 \\ (0.331) \\ \hline \mathbf{NRTS}_{t4} \\ -0.110 \\ (0.192) \\ -5.701 \\ (0.726) \\ \hline \mathbf{NRTS}_{t4} \\ -0.123 \\ (0.140) \\ \hline 0.551 \\ (0.542) \\ \hline \mathbf{NRTS}_{t4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	$\begin{array}{c} -0.053 \\ (0.524) \\ \hline DIIP_{t-1} \\ 0.000 \\ (0.720) \\ -0.684 \\ (0.000) \\ \hline DWPI_{t-1} \\ -0.004 \\ (0.544) \\ 0.320 \\ (0.000) \\ \hline DBOP_{t-1} \\ 0.000 \end{array}$	$\begin{array}{c} -0.069 \\ (0.397) \\ \hline DIIP_{t-2} \\ 0.000 \\ (0.987) \\ -0.161 \\ (0.126) \\ \hline DWPI_{t-2} \\ 0.000 \\ (0.911) \\ 0.060 \\ (0.470) \\ \hline DBOP_{t-2} \end{array}$	$\begin{array}{c} 0.185 \\ (0.030) \\ \hline DIIP_{i-3} \\ -0.000 \\ (0.996) \\ 0.197 \\ (0.063) \\ \hline DWPI_{i-3} \\ 0.009 \\ (0.235) \\ 0.303 \\ (0.000) \\ \hline DBOP_{i-3} \end{array}$	$\begin{array}{c} -0.047 \\ (0.576) \\ \hline DIIP_{t-4} \\ 0.000 \\ (0.957) \\ 0.051 \\ (0.573) \\ \hline DWPI_{t-4} \\ -0.017 \\ (0.026) \\ -0.267 \\ (0.001) \\ \hline DBOP_{t-4} \end{array}$	10216.09 (0.012) Constant 0.006 (0.224) 2.260 (0.037) Constant 0.012 (0.078) 0.259 (0.001)
3 4 5 6 7 8 9 10 11 12	NRTSt DIIPt NRTSt DWPIt DWPIt DBOPt DBOPt DBOPt	$\begin{array}{c} (0.159) \\ \hline NRTS_{t-1} \\ 0.425 \\ (0.000) \\ 19.153 \\ (0.232) \\ \hline NRTS_{t-1} \\ 0.423 \\ (0.000) \\ 1.050 \\ (0.240) \\ \hline NRTS_{t-1} \\ 0.377 \\ (0.000) \\ \hline 87385.92 \\ (0.001) \\ \hline NRTS_{t-1} \\ 0.449 \\ (0.000) \\ \hline 52491.59 \end{array}$	$\begin{array}{r} (0.940) \\ \hline \\ NRTS_{t\cdot 2} \\ -0.255 \\ (0.004) \\ -9.795 \\ (0.570) \\ \hline \\ NRTS_{t\cdot 2} \\ -0.239 \\ (0.007) \\ \hline \\ 1.154 \\ (0.228) \\ \hline \\ NRTS_{t\cdot 2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ \hline \\ NRTS_{t\cdot 2} \\ -0.220 \end{array}$	(0.217) NRTS _{E-3} 0.236 (0.007) 29.568 (0.083) NRTS _{E-3} 0.232 (0.008) 0.609 (0.521) NRTS _{E-3} 0.203 (0.019) 10800.92 (0.683)	$\begin{array}{c} (0.331) \\ \hline NRTS_{t4} \\ \hline -0.110 \\ (0.192) \\ \hline -5.701 \\ (0.726) \\ \hline NRTS_{t4} \\ \hline -0.123 \\ (0.140) \\ \hline 0.551 \\ (0.542) \\ \hline NRTS_{t4} \\ \hline -0.142 \\ (0.081) \\ \hline -17486.41 \\ \end{array}$	$\begin{array}{c} (0.524) \\ \hline DIIP_{t-1} \\ 0.000 \\ (0.720) \\ -0.684 \\ (0.000) \\ \hline DWPI_{t-1} \\ -0.004 \\ (0.544) \\ 0.320 \\ (0.000) \\ \hline DBOP_{t-1} \\ 0.000 \end{array}$	$\begin{array}{c} (0.397) \\ \hline DIIP_{t-2} \\ 0.000 \\ (0.987) \\ -0.161 \\ (0.126) \\ \hline DWPI_{t-2} \\ 0.000 \\ (0.911) \\ 0.060 \\ (0.470) \\ \hline DBOP_{t-2} \end{array}$	$\begin{array}{c} (0.030) \\ \hline \\ DIIP_{t-3} \\ -0.000 \\ (0.996) \\ \hline \\ 0.197 \\ (0.063) \\ \hline \\ DWPI_{t-3} \\ \hline \\ 0.009 \\ (0.235) \\ \hline \\ 0.303 \\ (0.000) \\ \hline \\ DBOP_{t-3} \end{array}$	$\begin{array}{c} (0.576) \\ \hline DIIP_{t4} \\ 0.000 \\ (0.957) \\ 0.051 \\ (0.573) \\ \hline DWPI_{t4} \\ -0.017 \\ (0.026) \\ -0.267 \\ (0.001) \\ \hline DBOP_{t4} \end{array}$	(0.012) Constant 0.006 (0.224) 2.260 (0.037) Constant 0.012 (0.078) 0.259 (0.001)
4 5 6 7 8 9 10 11 12	DIIPt NRTSt DWPIt NRTSt DBOPt NRTSt DFXREt	$\begin{array}{r} NRTS_{t-1} \\ 0.425 \\ (0.000) \\ 19.153 \\ (0.232) \\ NRTS_{t-1} \\ 0.423 \\ (0.000) \\ 1.050 \\ (0.240) \\ NRTS_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ NRTS_{t-1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	$\begin{tabular}{ c c c c c } \hline NRTS_{t\cdot 2} & -0.255 & (0.004) \\ \hline -9.795 & (0.570) & \\ \hline NRTS_{t\cdot 2} & -0.239 & (0.007) & \\ \hline 1.154 & (0.228) & \\ \hline NRTS_{t\cdot 2} & -0.275 & (0.002) & \\ \hline -11175.7 & (0.676) & \\ \hline NRTS_{t\cdot 2} & -0.220 & \\ \hline \end{tabular}$	$\begin{array}{c} $\rm NRTS_{I:3}$\\ 0.236\\ (0.007)$\\ 29.568\\ (0.083)$\\ $\rm NRTS_{I:3}$\\ 0.232\\ (0.008)$\\ 0.609\\ (0.521)$\\ $\rm NRTS_{I:3}$\\ 0.203\\ (0.019)$\\ 10800.92\\ (0.683)$\\ \end{array}$	$\begin{array}{r} NRTS_{t4} \\ -0.110 \\ (0.192) \\ -5.701 \\ (0.726) \\ NRTS_{t4} \\ -0.123 \\ (0.140) \\ 0.551 \\ (0.542) \\ NRTS_{t4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	$\begin{array}{c} \text{DIIP}_{t-1} \\ 0.000 \\ (0.720) \\ -0.684 \\ (0.000) \\ \text{DWPI}_{t-1} \\ -0.004 \\ (0.544) \\ 0.320 \\ (0.000) \\ \text{DBOP}_{t-1} \\ 0.000 \end{array}$	$\begin{array}{c} \text{DIIP}_{t-2} \\ 0.000 \\ (0.987) \\ -0.161 \\ (0.126) \\ \hline \text{DWPI}_{t-2} \\ 0.000 \\ (0.911) \\ 0.060 \\ (0.470) \\ \hline \text{DBOP}_{t-2} \end{array}$	$\begin{array}{c} DIIP_{t-3} \\ -0.000 \\ (0.996) \\ 0.197 \\ (0.063) \\ \hline DWPI_{t-3} \\ 0.009 \\ (0.235) \\ 0.303 \\ (0.000) \\ \hline DBOP_{t-3} \end{array}$	$\begin{array}{c} \text{DIIP}_{t4} \\ 0.000 \\ (0.957) \\ 0.051 \\ (0.573) \\ \hline \text{DWPI}_{t4} \\ -0.017 \\ (0.026) \\ -0.267 \\ (0.001) \\ \hline \text{DBOP}_{t4} \end{array}$	Constant 0.006 (0.224) 2.260 (0.037) Constant 0.012 (0.078) 0.259 (0.001)
4 5 6 7 8 9 10 11 12	DIIPt NRTSt DWPIt NRTSt DBOPt NRTSt DFXREt	$\begin{array}{c} 0.425 \\ (0.000) \\ 19.153 \\ (0.232) \\ NRTS_{t-1} \\ 0.423 \\ (0.000) \\ 1.050 \\ (0.240) \\ NRTS_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ NRTS_{t-1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	$\begin{array}{c} -0.255 \\ (0.004) \\ -9.795 \\ (0.570) \\ \text{NRTS}_{\text{b}2} \\ -0.239 \\ (0.007) \\ 1.154 \\ (0.228) \\ \text{NRTS}_{\text{b}2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ \text{NRTS}_{\text{b}2} \\ -0.220 \end{array}$	0.236 (0.007) 29.568 (0.083) NRTS _{L-3} 0.232 (0.008) 0.609 (0.521) NRTS _{L-3} 0.203 (0.019) 10800.92 (0.683)	$\begin{array}{r} -0.110 \\ (0.192) \\ -5.701 \\ (0.726) \\ NRTS_{t4} \\ -0.123 \\ (0.140) \\ 0.551 \\ (0.542) \\ NRTS_{t4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	$\begin{array}{c} 0.000\\ (0.720)\\ -0.684\\ (0.000)\\ DWPI_{t-1}\\ -0.004\\ (0.544)\\ 0.320\\ (0.000)\\ DBOP_{t-1}\\ 0.000\\ \end{array}$	$\begin{array}{c} 0.000\\ (0.987)\\ -0.161\\ (0.126)\\ \hline \text{DWPI}_{t\cdot2}\\ 0.000\\ (0.911)\\ 0.060\\ (0.470)\\ \hline \text{DBOP}_{t\cdot2} \end{array}$	$\begin{array}{c} -0.000 \\ (0.996) \\ 0.197 \\ (0.063) \\ \hline DWPI_{t-3} \\ 0.009 \\ (0.235) \\ 0.303 \\ (0.000) \\ \hline DBOP_{t-3} \end{array}$	$\begin{array}{c} 0.000\\ (0.957)\\ \hline 0.051\\ (0.573)\\ \hline DWPI_{t.4}\\ \hline -0.017\\ (0.026)\\ \hline -0.267\\ (0.001)\\ \hline DBOP_{t.4}\\ \end{array}$	0.006 (0.224) 2.260 (0.037) Constant 0.012 (0.078) 0.259 (0.001)
4 5 6 7 8 9 10 11 12	DIIPt NRTSt DWPIt NRTSt DBOPt NRTSt DFXREt	$\begin{array}{c} (0.000) \\ 19.153 \\ (0.232) \\ NRTS_{t-1} \\ 0.423 \\ (0.000) \\ 1.050 \\ (0.240) \\ NRTS_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ NRTS_{t-1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	$\begin{array}{c} (0.004) \\ -9.795 \\ (0.570) \\ \hline NRTS_{t\cdot 2} \\ -0.239 \\ (0.007) \\ 1.154 \\ (0.228) \\ \hline NRTS_{t\cdot 2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ \hline NRTS_{t\cdot 2} \\ -0.220 \\ \end{array}$	$\begin{array}{c} (0.007) \\ \hline 29.568 \\ (0.083) \\ \hline NRTS_{t-3} \\ 0.232 \\ (0.008) \\ \hline 0.609 \\ (0.521) \\ \hline NRTS_{t-3} \\ 0.203 \\ (0.019) \\ \hline 10800.92 \\ (0.683) \end{array}$	$\begin{array}{c} (0.192) \\ -5.701 \\ (0.726) \\ \text{NRTS}_{t4} \\ -0.123 \\ (0.140) \\ 0.551 \\ (0.542) \\ \text{NRTS}_{t4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	$\begin{array}{c} (0.720) \\ -0.684 \\ (0.000) \\ \hline DWPI_{t-1} \\ -0.004 \\ (0.544) \\ 0.320 \\ (0.000) \\ \hline DBOP_{t-1} \\ \hline 0.000 \end{array}$	(0.987) -0.161 (0.126) DWPI _{t-2} 0.000 (0.911) 0.060 (0.470) DBOP _{t-2}	(0.996) 0.197 (0.063) DWPI _{t-3} 0.009 (0.235) 0.303 (0.000) DBOP _{t-3}	(0.957) 0.051 (0.573) DWPI _{t-4} -0.017 (0.026) -0.267 (0.001) DBOP _{t-4}	(0.224) 2.260 (0.037) Constant 0.012 (0.078) 0.259 (0.001)
5 6 7 8 9 10 11 12	NRTS _t DWPI _t NRTS _t DBOP _t NRTS _t DFXRE _t	$\begin{array}{c} 19.153\\(0.232)\\ \textbf{NRTS}_{t-1}\\0.423\\(0.000)\\ 1.050\\(0.240)\\ \textbf{NRTS}_{t-1}\\0.377\\(0.000)\\ \textbf{87385.92}\\(0.001)\\ \textbf{NRTS}_{t-1}\\0.449\\(0.000)\\ \textbf{52491.59}\end{array}$	$\begin{array}{r} -9.795 \\ (0.570) \\ \hline NRTS_{t^2} \\ -0.239 \\ (0.007) \\ \hline 1.154 \\ (0.228) \\ \hline NRTS_{t^2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ \hline NRTS_{t^2} \\ -0.220 \\ \end{array}$	$\begin{array}{c} 29.568 \\ (0.083) \\ \hline NRTS_{1:3} \\ 0.232 \\ (0.008) \\ 0.609 \\ (0.521) \\ \hline NRTS_{1:3} \\ 0.203 \\ (0.019) \\ \hline 10800.92 \\ (0.683) \end{array}$	$\begin{array}{r} -5.701 \\ (0.726) \\ \hline NRTS_{t4} \\ -0.123 \\ (0.140) \\ \hline 0.551 \\ (0.542) \\ \hline NRTS_{t4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	$\begin{array}{c} -0.684 \\ (0.000) \\ \hline DWPI_{t-1} \\ -0.004 \\ (0.544) \\ \hline 0.320 \\ (0.000) \\ \hline DBOP_{t-1} \\ \hline 0.000 \end{array}$	$\begin{array}{c} -0.161 \\ (0.126) \\ \hline DWPI_{t-2} \\ 0.000 \\ (0.911) \\ \hline 0.060 \\ (0.470) \\ \hline DBOP_{t-2} \end{array}$	$\begin{array}{c} 0.197 \\ (0.063) \\ \hline DWPI_{t-3} \\ 0.009 \\ (0.235) \\ \hline 0.303 \\ (0.000) \\ \hline DBOP_{t-3} \end{array}$	$\begin{array}{c} 0.051 \\ (0.573) \\ \hline DWPI_{t.4} \\ -0.017 \\ (0.026) \\ -0.267 \\ (0.001) \\ \hline DBOP_{t.4} \end{array}$	2.260 (0.037) Constant 0.012 (0.078) 0.259 (0.001)
5 6 7 8 9 10 11 12	NRTS _t DWPI _t NRTS _t DBOP _t NRTS _t DFXRE _t	$\begin{array}{c} NRTS_{t-1} \\ 0.423 \\ (0.000) \\ 1.050 \\ (0.240) \\ NRTS_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ NRTS_{t-1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	$\begin{tabular}{ c c c c c c c }\hline NRTS_{t-2} & -0.239 & (0.007) \\\hline 1.154 & (0.228) & \\\hline NRTS_{t-2} & -0.275 & (0.002) & \\\hline -0.0020 & & \\\hline -11175.7 & (0.676) & \\\hline NRTS_{t-2} & -0.220 & \\\hline \end{tabular}$	$\begin{array}{r} NRTS_{L3} \\ 0.232 \\ (0.008) \\ 0.609 \\ (0.521) \\ NRTS_{L3} \\ 0.203 \\ (0.019) \\ 10800.92 \\ (0.683) \end{array}$	$\begin{array}{c} NRTS_{t4} \\ -0.123 \\ (0.140) \\ 0.551 \\ (0.542) \\ NRTS_{t4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	DWPI _{t-1} -0.004 (0.544) 0.320 (0.000) DBOP _{t-1} 0.000	DWPI _{t-2} 0.000 (0.911) 0.060 (0.470) DBOP _{t-2}	DWPI _{t-3} 0.009 (0.235) 0.303 (0.000) DBOP _{t-3}	DWPI _{t-4} -0.017 (0.026) -0.267 (0.001) DBOP _{t-4}	Constant 0.012 (0.078) 0.259 (0.001)
6 7 8 9 10 11 12	DWPIt NRTSt DBOPt NRTSt DFXREt	$\begin{array}{c} 0.423 \\ (0.000) \\ 1.050 \\ (0.240) \\ \text{NRTS}_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ \text{NRTS}_{t-1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	$\begin{array}{c} -0.239 \\ (0.007) \\ 1.154 \\ (0.228) \\ \hline NRTS_{t+2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ \hline NRTS_{t+2} \\ -0.220 \\ \end{array}$	$\begin{array}{c} 0.232 \\ (0.008) \\ \hline 0.609 \\ (0.521) \\ \hline NRTS_{L3} \\ \hline 0.203 \\ (0.019) \\ \hline 10800.92 \\ (0.683) \end{array}$	$\begin{array}{c} -0.123 \\ (0.140) \\ 0.551 \\ (0.542) \\ \text{NRTS}_{t4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	-0.004 (0.544) 0.320 (0.000) DBOP _{t-1} 0.000	0.000 (0.911) 0.060 (0.470) DBOP _{t-2}	0.009 (0.235) 0.303 (0.000) DBOP _{t-3}	-0.017 (0.026) -0.267 (0.001) DBOP _{t-4}	0.012 (0.078) 0.259 (0.001)
6 7 8 9 10 11 12	DWPIt NRTSt DBOPt NRTSt DFXREt	$\begin{array}{c} (0.000) \\ 1.050 \\ (0.240) \\ NRTS_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ NRTS_{t-1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	$\begin{array}{c} (0.007) \\ \hline 1.154 \\ (0.228) \\ \hline NRTS_{t\cdot 2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ \hline NRTS_{t\cdot 2} \\ -0.220 \end{array}$	$\begin{array}{c} (0.008) \\ \hline 0.609 \\ (0.521) \\ \hline NRTS_{L3} \\ \hline 0.203 \\ (0.019) \\ \hline 10800.92 \\ (0.683) \end{array}$	(0.140) 0.551 (0.542) NRTS ₁₋₄ -0.142 (0.081) -17486.41	(0.544) 0.320 (0.000) DBOP _{t-1} 0.000	(0.911) 0.060 (0.470) DBOP _{t-2}	(0.235) 0.303 (0.000) DBOP _{t-3}	(0.026) -0.267 (0.001) DBOP _{t-4}	(0.078) 0.259 (0.001)
7 8 9 10 11 12	NRTS _t DBOP _t NRTS _t DFXRE _t	$\begin{array}{c} 1.050 \\ (0.240) \\ NRTS_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ NRTS_{t-1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	$\begin{array}{c} 1.154 \\ (0.228) \\ \hline NRTS_{t\cdot 2} \\ -0.275 \\ (0.002) \\ -11175.7 \\ (0.676) \\ \hline NRTS_{t\cdot 2} \\ -0.220 \end{array}$	0.609 (0.521) NRTS _{L3} 0.203 (0.019) 10800.92 (0.683)	$\begin{array}{c} 0.551 \\ (0.542) \\ \hline NRTS_{t.4} \\ -0.142 \\ (0.081) \\ -17486.41 \end{array}$	0.320 (0.000) DBOP _{t-1} 0.000	0.060 (0.470) DBOP _{t-2}	0.303 (0.000) DBOP _{t-3}	-0.267 (0.001) DBOP _{t-4}	0.259 (0.001)
7 8 9 10 11 12	NRTS _t DBOP _t NRTS _t DFXRE _t	$\begin{array}{c} (0.240) \\ \hline NRTS_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ \hline NRTS_{t-1} \\ 0.449 \\ (0.000) \\ \hline 52491.59 \end{array}$	(0.228) <u>NRTS₁₋₂</u> -0.275 (0.002) -11175.7 (0.676) <u>NRTS₁₋₂</u> -0.220	(0.521) NRTS _{t-3} 0.203 (0.019) 10800.92 (0.683)	(0.542) NRTS _{t-4} -0.142 (0.081) -17486.41	(0.000) DBOP _{t-1} 0.000	(0.470) DBOP _{t-2}	(0.000) DBOP _{t-3}	(0.001) DBOP _{t-4}	(0.001)
8 9 10 11 12	DBOP _t NRTS _t DFXRE _t	$\begin{array}{c} NRTS_{t-1} \\ 0.377 \\ (0.000) \\ 87385.92 \\ (0.001) \\ NRTS_{t-1} \\ 0.449 \\ (0.000) \\ 52491.59 \end{array}$	NRTS _{t-2} -0.275 (0.002) -11175.7 (0.676) NRTS _{t-2} -0.220	NRTS _{t-3} 0.203 (0.019) 10800.92 (0.683)	NRTS _{t-4} -0.142 (0.081) -17486.41	DBOP _{t-1} 0.000	DBOP _{t-2}	DBOP _{t-3}	DBOP _{t-4}	
8 9 10 11 12	DBOP _t NRTS _t DFXRE _t	$\begin{array}{c} 0.377\\ (0.000)\\ 87385.92\\ (0.001)\\ \hline NRTS_{t-1}\\ 0.449\\ (0.000)\\ 52491.59\\ \end{array}$	-0.275 (0.002) -11175.7 (0.676) NRTS _{t-2} -0.220	0.203 (0.019) 10800.92 (0.683)	-0.142 (0.081) -17486.41	0.000				
8 9 10 11 12	DBOP _t NRTS _t DFXRE _t	87385.92 (0.001) NRTS _{t-1} 0.449 (0.000) 52491.59	-11175.7 (0.676) NRTS _{t-2} -0.220	10800.92 (0.683)	-17486.41	(0.202)	0.000	0.000	0.000	0.008
9 10 11 12	NRTS _t DFXRE _t	(0.001) NRTS _{t-1} 0.449 (0.000) 52491.59	(0.676) NRTS _{t-2} -0.220	(0.683)		(0.303)	(0.237)	(0.005)	(0.301)	(0.097)
9 10 11 12	NRTS _t DFXRE _t	NRTS _{t-1} 0.449 (0.000) 52491.59	NRTS _{t-2} -0.220			-0.056	-0.018	-0.344	-0.079	-620.345
10 11 12	DFXRE _t	0.449 (0.000) 52491.59	-0.220		(0.482)	(0.502)	(0.815)	(0.000)	(0.356)	(0.695)
10 11 12	DFXRE _t	(0.000) 52491.59			NRTS _{t-4}	DFXRE _{t-1}	DFXRE _{t-2}	DFXRE _{t-3}	DFXRE _{t-4}	Constant
11 12	-	52491.59		0.201 (0.025)	-0.084 (0.311)	-0.000 (0.050)	0.000 (0.514)	0.000 (0.316)	-0.000 (0.675)	0.008 (0.189)
11 12	-		-5870.142	32335.05	34024.19	0.146	-0.053	0.165	-0.023	5321.314
12	NRTS t		(0.854)	(0.306)	(0.249)	(0.083)	(0.529)	(0.057)	(0.786)	(0.014)
12	NRTS t	NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DFXRA _{t-1}	DFXRA _{t-2}	DFXRA _{t-3}	DFXRA _{t-4}	Constant
12	NKIS _t	0.389	-0.283	0.297	-0.169	-0.009	-0.006	0.014	-0.010	0.008
		(0.000)	(0.004)	(0.002)	(0.071)	(0.298)	(0.457)	(0.117)	(0.240)	(0.140)
	DFXRA t	-0.533	0.347	-2.138	0.095	0.312	-0.082	-0.137	0.130	0.036
	•	(0.580) NRTS _{t-1}	(0.733) NRTS _{t-2}	(0.034) NRTS _{t-3}	(0.922)	(0.001) DRPR _{t-1}	(0.399) DRPR _{t-2}	(0.157) DRPR _{t-3}	(0.166) DRPR _{t-4}	(0.515) Constant
		0.455	-0.274	0.241	NRTS _{t-4} -0.059	0.001	-0.016	0.006	-0.018	0.005
13	NRTS t	(0.000)	(0.002)	(0.008)	(0.485)	(0.899)	(0.084)	(0.476)	(0.038)	(0.337)
1.4	DDDD	-0.213	2.975	-0.567	0.330	-0.219	-0.317	0.044	0.057	-0.087
14	DRPR t	(0.778)	(0.000)	(0.496)	(0.672)	(0.010)	(0.000)	(0.596)	(0.482)	(0.077)
		NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DTBR _{t-1}	DTBR _{t-2}	DTBR _{t-3}	DTBR _{t-4}	Constant
15	NRTS t	0.423	-0.260	0.232	-0.098	0.020	-0.009	-0.005	-0.024	0.006
	THE P	(0.000)	(0.003)	(0.009)	(0.237)	(0.070)	(0.423)	(0.613)	(0.032)	(0.184)
16	DTBR t	0.365 (0.553)	1.285 (0.053)	-0.234 (0.726)	0.102 (0.869)	0.107 (0.205)	-0.000 (0.994)	0.052 (0.541)	0.001 (0.988)	-0.029 (0.446)
		NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DPLR _{t-1}	DPLR ₁₋₂	DPLR _{t-3}	DPLR ₁₋₄	Constant
		0.413	-0.233	0.243	-0.106	0.009	-0.050	-0.020	0.013	0.007
17	NRTS t	(0.000)	(0.009)	(0.005)	(0.195)	(0.707)	(0.043)	(0.391)	(0.555)	(0.181)
18	DPLR _t	0.189	-0.336	-0.010	0.154	0.017	0.355	-0.074	-0.153	0.004
10	DILK	(0.503)	(0.261)	(0.972)	(0.575)	(0.829)	(0.000)	(0.346)	(0.053)	(0.807)
		NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t4}	FII _{t-1}	FII _{t-2}	FII _{t-3}	FII _{t-4}	Constant
19	NRTS t	0.334 (0.000)	-0.227 (0.017)	0.215 (0.019)	-0.094	0.000 (0.006)	-0.000 (0.348)	0.000 (0.673)	-0.000 (0.286)	0.004
		641.839	-4855.599	14981.32	(0.275) -1404.536	0.312	0.101	0.092	-0.058	(0.440) 1582.194
20	FII t	(0.944)	(0.610)	(0.103)	(0.872)	(0.001)	(0.292)	(0.338)	(0.534)	(0.009)
I		NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DTRV _{t-1}	DTRV _{t-2}	DTRV _{t-3}	DTRV _{t-4}	Constant
21	NDTC	0.441	-0.268	0.246	-0.108	-0.000	0.000	-0.000	-0.000	0.007
21	NRTS t	(0.000)	(0.003)	(0.005)	(0.193)	(0.684)	(0.694)	(0.523)	(0.588)	(0.182)
22	DTRV t	61.266	-726.456	1082.802	-20.251	-0.785	-0.193	-0.155	-0.147	50.525
	2	(0.953)	(0.515)	(0.328)	(0.984)	(0.000)	(0.077)	(0.156)	(0.088)	(0.446)
		NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DMCP _{t-1}	DMCP _{t-2}	DMCP _{t-3}	DMCP _{t-4}	Constant 0.005
23	NRTS t	0.194 (0.062)	-0.061 (0.555)	0.177 (0.078)	-0.220 (0.008)	0.000 (0.000)	-0.000 (0.171)	-0.000 (0.204)	0.000 (0.031)	0.005 (0.235)
		559048.8	-382442.8	471265.7	-515257	-0.021	0.029	-0.007	0.176	34453.94
24	DMCP t	(0.303)	(0.477)	(0.368)	(0.237)	(0.842)	(0.810)	(0.953)	(0.151)	(0.164)
		NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DCRO _{t-1}	DCRO _{t-2}	DCRO _{t-3}	DCRO _{t-4}	Constant
25	NRTS t	0.411	-0.264	0.207	-0.056	0.000	0.001	0.000	-0.002	0.007
23	incid t	(0.000)	(0.003)	(0.020)	(0.508)	(0.767)	(0.345)	(0.466)	(0.015)	(0.170)
26	DCRO _t	9.502	-4.725	-1.767	11.223	0.308	0.278	-0.059	-0.196	0.247
		(0.159) NRTS _{t-1}	(0.509)	(0.803) NRTS _{t-3}	(0.099)	(0.001) DGLD _{t-1}	(0.003) DGLD _{t-2}	(0.520) DGLD _{t-3}	(0.025) DGLD _{t-4}	(0.554) Constant
— I		0.429	NRTS _{t-2} -0.242	0.237	NRTS _{t-4} -0.117	-0.000	0.000	0.000	0.000	0.005
27	NRTS t	(0.000)	(0.006)	(0.007)	(0.153)	(0.276)	(0.154)	(0.554)	(0.890)	(0.373)
20	DOLD	277.625	379.966	145.730	-395.942	0.024	-0.058	0.039	0.040	110.321
28	DGLD t	(0.595)	(0.497)	(0.7920)	(0.444)	(0.773)	(0.492)	(0.644)	(0.638)	(0.004)
· ·		NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DDSLV _{t-1}	DDSLV _{t-2}	DDSLV _{t-3}	DDSLV _{t-4}	Constant
29	NRTS t	0.423	-0.249	0.227	-0.095	0.000	0.000	0.000	-0.000	0.006
	1111101	(0.000)	(0.006)	(0.011)	(0.255)	(0.825)	(0.959)	(0.683)	(0.772)	(0.192)
	DDGLV	468.552 (0.775	562.141 (0.704)	-736.36 (0.670)	957.419 (0.555	-0.444 (0.000)	-0.609 (0.000)	-0.310 (0.002)	-0.029 (0.753)	156.594 (0.401)

Notes: (i) Related P-values are shown in parentheses "()". (ii) Significant at 95% confidence level. (iii) Variable labels without any prefix are stationary at their own level, I (0); labels prefixed with D are stationary after differencing once, I (1); and the variables prefixed with DD are stationary after differencing twice, I (2).

As the results of VAR and causality test in bi-variate framework are not suitable for drawing valid conclusions, and attempt was made to apply Granger causality test in a multivariate VAR framework. The results contained in table 6 and 7 reveal that apart from the results of causality relation in bi-variate VAR framework (viz., NRTS is a Granger cause to DBOP and DRPR, and DBOP and DMCP is a Granger cause to NRTS), there are some more causal relations in multivariate VAR framework. These are:

- NRTS is affected by DBOP and DMCP. Bidirectional causal relationship is observed between NRTS and DBOP.
- DIIP is affected by DGDP and DWPI, and DWPI is affected by DGDP and DIIP. Thus, DGDP is a granger cause to DIIP and DWPI. Further, DIIP

and DWPI are found to have bi-directional causality (relationship of Feedback).

- DBOP is influenced by NRTS, DFXRE, and DFXRA; while DFXRE is affected by DBOP and DFXRA. Bilateral causality is observed between DBOP and DFXRE, and DFXRE and DFXRA.
- Among money market indicators, DRPR is affected by NRTS, DTBR and DPLR; while DTBR explain variations in DPLR.
- FII is a factor which affects changes in DMCP, but it is affected by DTRV. DMCP is found to be a granger cause to NRTS.
- DDSLV is a granger cause to DCRO and DGLD. DGLD and DDSLV have bidirectional causality, (i.e., relationship of Feedback).

Table 6: Granger Causality Test for NRTS and Selected Indicators in Multivariate Framework
NRTS and Real Economy Indicators

NRTS and Real Economy Indicators								
S.	Null Hypothesis	F-	Р-	Ho Rejected/ Not	Causality Inference			
No.	Null Hypothesis	Stat.	Value	Rejected	-			
1	NRTS doesn't Granger Cause to DGDP	1.019	0.399	Ho Not Rejected	Exogeneity			
2	DGDP doesn't Granger Cause to NRTS	0.912	0.458	Ho Not Rejected	Exogeneity			
3	NRTS doesn't Granger Cause to DIIP	0.968	0.427	Ho Not Rejected	Evenentity			
4	DIIP doesn't Granger Cause to NRTS	0.046	0.995	Ho Not Rejected	Exogeneity			
5	NRTS doesn't Granger Cause to DWPI	1.637	0.168	Ho Not Rejected	Encoursiter			
6	DWPI doesn't Granger Cause to NRTS	1.521	0.199	H _o Not Rejected	Exogeneity			
7	DGDP doesn't Granger Cause to DIIP	25.490	0.000*	H _o Rejected	Unidirectional Causality			
8	DIIP doesn't Granger Cause to DGDP	0.690	0.599	H _o Not Rejected	DGDP→DIIP			
9	DGDP doesn't Granger Cause to DWPI	2.905	0.024*	H ₀ Rejected	Unidirectional Causality			
10	DWPI doesn't Granger Cause to DGDP	2.270	0.065	H _O Not Rejected	DGDP→DWPI			
11	DIIP doesn't Granger Cause to DWPI	4.618	0.001*	H _o Rejected	Bidirectional Causality			
12	DWPI doesn't Granger Cause to DIIP	3.515	0.009*	H _o Rejected	Feedback			
NRT	S and Forex Market Indicators			• • •	•			
1	NRTS doesn't Granger Cause to DBOP	2.932	0.023*	H _O Rejected	Bidirectional Causality			
2	DBOP doesn't Granger Cause to NRTS	2.372	0.050*	H ₀ Rejected	Feedback			
3	NRTS doesn't Granger Cause to DFXRE	1.823	0.128	H _o Not Rejected				
4	DFXRE doesn't Granger Cause to NRTS	1.316	0.267	H ₀ Not Rejected	Exogeneity			
5	NRTS doesn't Granger Cause to DFXRA	1.207	0.310	H _o Not Rejected				
6	DFXRA doesn't Granger Cause to NRTS	1.110	0.354	H _o Not Rejected	Exogeneity			
7	DBOP doesn't Granger Cause to DFXRE	3.457	0.010*	H ₀ Rejected	Bidirectional Causality			
8	DFXRE doesn't Granger Cause to DBOP	5.825	0.000*	H ₀ Rejected	Feedback			
9	DBOP doesn't Granger Cause to DFXRA	1.978	0.101	H _O Not Rejected	Unidirectional Causality			
10	DFXRA doesn't Granger Cause to DBOP	3.931	0.004*	H _o Rejected	DFXRA→DBOP			
11	DFXRE doesn't Granger Cause to DFXRA	8.225	0.000*	H _o Rejected	Bidirectional Causality			
12	DFXRA doesn't Granger Cause to DFXRE	5.026	0.000*	H _o Rejected	Feedback			
NRT	S and Money Market Indicators			· · ·	•			
1	NRTS doesn't Granger Cause to DRPR	3.702	0.006*	H _o Rejected	Unidirectional Causality			
2	DRPR doesn't Granger Cause to NRTS	1.846	0.123	Ho Not Rejected	NRTS→DRPR			
3	NRTS doesn't Granger Cause to DTBR	1.444	0.223	Ho Not Rejected	Enconsite			
4	DTBR doesn't Granger Cause to NRTS	2.045	0.091	Ho Not Rejected	Exogeneity			
5	NRTS doesn't Granger Cause to DPLR	0.498	0.736	H _o Not Rejected				
6	DPLR does not Granger Cause to NRTS	1.128	0.345	H _o Not Rejected	Exogeneity			
7	DRPR does not Granger Cause to DTBR	0.843	0.499	H _o Not Rejected	Unidirectional Causality			
8	DTBR does not Granger Cause to DRPR	3.874	0.005*	H _o Rejected	DTBR→DRPR			
9	DRPR does not Granger Cause to DPLR	1.453	0.220	H ₀ Not Rejected	Unidirectional Causality			
10	DPLR does not Granger Cause to DRPR	4.713	0.001*	H _o Rejected	DPLR→DRPR			
11	DTBR does not Granger Cause to DPLR	4.434	0.002*	H _o Rejected	Unidirectional Causality			
12	DPLR does not Granger Cause to DTBR	1.583	0.182	H ₀ Not Rejected	DTBR→DPLR			
NRT	S and Stock Market Indicators							
1	NRTS doesn't Granger Cause to FII	0.649	0.628	H _O Not Rejected	Exogensity			
2	FII doesn't Granger Cause to NRTS	2.096	0.084	Ho Not Rejected	Exogeneity			
3	NRTS doesn't Granger Cause to DTRV	0.292	0.882	H _o Not Rejected	Exogeneity			

4DTRV doesn't Granger Cause to NRTS0.6740.610H ₀ Not Rejected5NRTS doesn't Granger Cause to DMCP0.7290.573H ₀ Not RejectedUnidirectional Causality6DMCP doesn't Granger Cause to NRTS9.2360.000*H ₀ RejectedDMCP→NRTS7FII doesn't Granger Cause to DTRV1.6170.173H ₀ Not RejectedUnidirectional Causality8DTRV doesn't Granger Cause to FII2.6770.034*H ₀ RejectedDTRV→FII9FII doesn't Granger Cause to FII2.1560.007*H ₀ Not RejectedDTRV→FII10DMCP doesn't Granger Cause to DMCP0.3970.810H ₀ Not RejectedExogeneity11DTRV doesn't Granger Cause to DTRV0.4220.792H ₀ Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV0.4220.792H ₀ Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV0.4220.792H ₀ Not RejectedExogeneity2DCRO does not Granger Cause to DRCD1.3870.241H ₀ Not RejectedExogeneity3NRTS does not Granger Cause to DGLD0.4590.765H ₀ Not RejectedExogeneity4DGLD does not Granger Cause to DDSLV0.2300.921H ₀ Not RejectedExogeneity5NRTS doesn't Granger Cause to DGLD0.9140.457H ₀ Not RejectedExogeneity6DDSLV doesn't Granger Cause to DGLD0.9140.457H ₀ Not RejectedExogeneity <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		~	0.674	0.610	9				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	6	0.729	0.573	Ho Not Rejected	Unidirectional Causality			
8DTRV doesn't Granger Cause to FII2.6770.034*H ₀ RejectedDTRV→FII9FII doesn't Granger Cause to DMCP3.1320.016*H ₀ RejectedUnidirectional Causality10DMCP doesn't Granger Cause to FII2.1560.077H ₀ Not RejectedFII→DMCP11DTRV doesn't Granger Cause to DMCP0.3970.810H ₀ Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV0.4220.792H ₀ Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV0.4220.792H ₀ Not RejectedExogeneity14NRTS does not Granger Cause to DCRO1.3870.241H ₀ Not RejectedExogeneity2DCRO does not Granger Cause to DGLD0.4590.765H ₀ Not RejectedExogeneity3NRTS does not Granger Cause to DGLD0.4590.765H ₀ Not RejectedExogeneity4DGLD does not Granger Cause to NRTS0.8510.494H ₀ Not RejectedExogeneity5NRTS doesn't Granger Cause to NRTS0.1000.921H ₀ Not RejectedExogeneity6DDSLV doesn't Granger Cause to DGLD0.9140.457H ₀ Not RejectedExogeneity7DCRO doesn't Granger Cause to DCRO1.8300.126H ₀ Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO1.8300.126H ₀ Not RejectedDDSLV →DCRO9DCRO doesn't Granger Cause to DCRO4.2540.002*H ₀ RejectedDDSLV →DCRO<	6	DMCP doesn't Granger Cause to NRTS	9.236	0.000*	H _O Rejected	DMCP→NRTS			
9FII doesn't Granger Cause to DMCP 3.132 0.016^* H_0 RejectedUnidirectional Causality10DMCP doesn't Granger Cause to FII 2.156 0.077 H_0 Not RejectedFII \rightarrow DMCP11DTRV doesn't Granger Cause to DMCP 0.397 0.810 H_0 Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV 0.422 0.792 H_0 Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV 0.422 0.792 H_0 Not RejectedExogeneity2DCRO does not Granger Cause to DCRO 1.387 0.241 H_0 Not RejectedExogeneity3NRTS does not Granger Cause to DGLD 0.459 0.765 H_0 Not RejectedExogeneity4DGLD does not Granger Cause to DDSLV 0.281 0.494 H_0 Not RejectedExogeneity5NRTS doesn't Granger Cause to DDSLV 0.2921 H_0 Not RejectedExogeneity6DDSLV doesn't Granger Cause to DGLD 0.914 0.457 H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DCRO 1.830 0.126 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO 1.830 0.126 H_0 Not RejectedDDSLV \rightarrow DCRO9DCRO doesn't Granger Cause to DCRO 4.254 0.002^* H_0 RejectedDDSLV \rightarrow DCRO11DGLD doesn't Granger Cause to DCRO 4.254 0.002^* H_0 RejectedDDSLV \rightarrow DCRO10DDSLV doesn't Granger Cause to DCRO 4.254	7	FII doesn't Granger Cause to DTRV	1.617	0.173	Ho Not Rejected	Unidirectional Causality			
10DMCP doesn't Granger Cause to FII2.1560.077H ₀ Not RejectedFII→DMCP11DTRV doesn't Granger Cause to DMCP0.3970.810H ₀ Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV0.4220.792H ₀ Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV0.4220.792H ₀ Not RejectedExogeneity12DCRO does not Granger Cause to DCRO1.3870.241H ₀ Not RejectedExogeneity2DCRO does not Granger Cause to NRTS1.5960.179H ₀ Not RejectedExogeneity3NRTS does not Granger Cause to DGLD0.4590.765H ₀ Not RejectedExogeneity4DGLD does not Granger Cause to NRTS0.8510.494H ₀ Not RejectedExogeneity5NRTS doesn't Granger Cause to DDSLV0.2300.921H ₀ Not RejectedExogeneity6DDSLV doesn't Granger Cause to DGLD0.9140.457H ₀ Not RejectedExogeneity7DCRO doesn't Granger Cause to DCRO1.8300.126H ₀ Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO1.8300.126H ₀ Not RejectedDSLV→DCRO9DCRO doesn't Granger Cause to DCRO4.2540.002*H ₀ RejectedDDSLV→DCRO11DGLD doesn't Granger Cause to DCRO4.2540.002*H ₀ RejectedBidirectional Causality10DDSLV doesn't Granger Cause to DCRO2.8900.024*H ₀ RejectedBidirectional Cau	8	DTRV doesn't Granger Cause to FII	2.677	0.034*	H _O Rejected	DTRV→FII			
11DTRV doesn't Granger Cause to DMCP 0.397 0.810 H_0 Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV 0.422 0.792 H_0 Not RejectedExogeneity12DMCP doesn't Granger Cause to DTRV 0.422 0.792 H_0 Not RejectedExogeneity1NRTS does not Granger Cause to DCRO 1.387 0.241 H_0 Not RejectedExogeneity2DCRO does not Granger Cause to NRTS 1.596 0.179 H_0 Not RejectedExogeneity3NRTS does not Granger Cause to DGLD 0.459 0.765 H_0 Not RejectedExogeneity4DGLD does not Granger Cause to NRTS 0.851 0.494 H_0 Not RejectedExogeneity5NRTS doesn't Granger Cause to DDSLV 0.230 0.921 H_0 Not RejectedExogeneity6DDSLV doesn't Granger Cause to DGLD 0.914 0.457 H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DCRO 1.830 0.126 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DDSLV 2.193 0.073 H_0 Not RejectedUnidirectional Causality9DCRO doesn't Granger Cause to DCRO 4.254 $0.002*$ H_0 RejectedDSLV \rightarrow DCRO11DGLD doesn't Granger Cause to DDSLV 3.835 $0.005*$ H_0 RejectedBidirectional Causality10DDSLV doesn't Granger Cause to DDSLV 3.835 $0.002*$ H_0 RejectedBidirectional Causality12DDSLV does	9	FII doesn't Granger Cause to DMCP	3.132	0.016*	H _O Rejected	Unidirectional Causality			
12DMCP doesn't Granger Cause to DTRV 0.422 0.792 H_0 Not RejectedExogeneityNRTS and Commodity Market Indicators1NRTS does not Granger Cause to DCRO 1.387 0.241 H_0 Not RejectedExogeneity2DCRO does not Granger Cause to NRTS 1.596 0.179 H_0 Not RejectedExogeneity3NRTS does not Granger Cause to DGLD 0.459 0.765 H_0 Not RejectedExogeneity4DGLD does not Granger Cause to NRTS 0.851 0.494 H_0 Not RejectedExogeneity5NRTS doesn't Granger Cause to DDSLV 0.230 0.921 H_0 Not RejectedExogeneity6DDSLV doesn't Granger Cause to DGLD 0.914 0.457 H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DCRO 1.830 0.126 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DDSLV 2.193 0.073 H_0 Not RejectedExogeneity9DCRO doesn't Granger Cause to DCRO 4.254 $0.002*$ H_0 RejectedDDSLV \rightarrow DCRO11DGLD doesn't Granger Cause to DDSLV 3.835 $0.005*$ H_0 RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD 2.890 $0.024*$ H_0 RejectedFeedback14DGLD doesn't Granger Cause to DDSLV 3.835 $0.005*$ H_0 RejectedDDSLV \rightarrow DCRO11DGLD doesn't Granger Cause to DGLD 2.890 $0.024*$ H_0 RejectedBidirectional Causality	10	DMCP doesn't Granger Cause to FII	2.156	0.077	Ho Not Rejected	FII→DMCP			
12DMCP doesn't Granger Cause to DTRV 0.422 0.792 H_0 Not RejectedNRTS and Commodity Market Indicators1NRTS does not Granger Cause to DCRO 1.387 0.241 H_0 Not RejectedExogeneity2DCRO does not Granger Cause to NRTS 1.596 0.179 H_0 Not RejectedExogeneity3NRTS does not Granger Cause to DGLD 0.459 0.765 H_0 Not RejectedExogeneity4DGLD does not Granger Cause to NRTS 0.851 0.494 H_0 Not RejectedExogeneity5NRTS doesn't Granger Cause to DDSLV 0.230 0.921 H_0 Not RejectedExogeneity6DDSLV doesn't Granger Cause to DGLD 0.914 0.457 H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DCRO 1.830 0.126 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DDSLV 2.193 0.073 H_0 Not RejectedDDSLV $\rightarrow DCRO$ 9DCRO doesn't Granger Cause to DCRO 4.254 $0.002*$ H_0 RejectedDDSLV $\rightarrow DCRO$ 11DGLD doesn't Granger Cause to DDSLV 3.835 $0.005*$ H_0 RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD 2.890 $0.024*$ H_0 RejectedFeedback14DGLD doesn't Granger Cause to DGLD 2.890 $0.024*$ H_0 RejectedBidirectional Causality10DDSLV doesn't Granger Cause to DGLD 2.890 $0.024*$ H_0 RejectedBidirectional Causality </td <td>11</td> <td>DTRV doesn't Granger Cause to DMCP</td> <td>0.397</td> <td>0.810</td> <td>Ho Not Rejected</td> <td>Evogonoitu</td>	11	DTRV doesn't Granger Cause to DMCP	0.397	0.810	Ho Not Rejected	Evogonoitu			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	DMCP doesn't Granger Cause to DTRV	0.422	0.792	Ho Not Rejected	Exogeneity			
2DCRO does not Granger Cause to NRTS 1.596 0.179 H_0 Not RejectedExogeneity3NRTS does not Granger Cause to DGLD 0.459 0.765 H_0 Not RejectedExogeneity4DGLD does not Granger Cause to NRTS 0.851 0.494 H_0 Not RejectedExogeneity5NRTS doesn't Granger Cause to DDSLV 0.230 0.921 H_0 Not RejectedExogeneity6DDSLV doesn't Granger Cause to NRTS 0.100 0.982 H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DGLD 0.914 0.457 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO 1.830 0.126 H_0 Not RejectedExogeneity9DCRO doesn't Granger Cause to DDSLV 2.193 0.073 H_0 Not RejectedDDSLV $\rightarrow DCRO$ 10DDSLV doesn't Granger Cause to DCRO 4.254 $0.002*$ H_0 RejectedDDSLV $\rightarrow DCRO$ 11DGLD doesn't Granger Cause to DDSLV 3.835 $0.005*$ H_0 RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD 2.890 $0.024*$ H_0 RejectedFeedbackNotes: (i) [*] denotes rejection of null hypothesis at 95% confidence level.	NRT	S and Commodity Market Indicators							
2DCRO does not Granger Cause to NRTS1.596 0.179 H_0 Not Rejected $E_{\rm c}$ or $E_{\rm c}$ 3NRTS does not Granger Cause to DGLD 0.459 0.765 H_0 Not RejectedExogeneity4DGLD does not Granger Cause to NRTS 0.851 0.494 H_0 Not RejectedExogeneity5NRTS doesn't Granger Cause to DDSLV 0.230 0.921 H_0 Not RejectedExogeneity6DDSLV doesn't Granger Cause to NRTS 0.100 0.982 H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DGLD 0.914 0.457 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO 1.830 0.126 H_0 Not RejectedExogeneity9DCRO doesn't Granger Cause to DDSLV 2.193 0.073 H_0 Not RejectedDDSLV $\rightarrow DCRO$ 10DDSLV doesn't Granger Cause to DCRO 4.254 $0.002*$ H_0 RejectedDDSLV $\rightarrow DCRO$ 11DGLD doesn't Granger Cause to DDSLV 3.835 $0.005*$ H_0 RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD 2.890 $0.024*$ H_0 RejectedFeedbackNotes: (i) [*] denotes rejection of null hypothesis at 95% confidence level.	1	NRTS does not Granger Cause to DCRO	1.387	0.241	Ho Not Rejected	Exogeneity			
4DGLD does not Granger Cause to NRTS0.8510.494H_0 Not RejectedExogeneity5NRTS doesn't Granger Cause to DDSLV0.2300.921H_0 Not RejectedExogeneity6DDSLV doesn't Granger Cause to NRTS0.1000.982H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DGLD0.9140.457H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO1.8300.126H_0 Not RejectedExogeneity9DCRO doesn't Granger Cause to DDSLV2.1930.073H_0 Not RejectedDDSLV →DCRO10DDSLV doesn't Granger Cause to DDSLV3.8350.002*H_0 RejectedDDSLV →DCRO11DGLD doesn't Granger Cause to DGLD2.8900.024*H_0 RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD2.8900.024*H_0 RejectedFeedbackNotes: (i) [*] denotes rejection of null hypothesis at 95% confidence level.	2	DCRO does not Granger Cause to NRTS	1.596	0.179	Ho Not Rejected	Exogeneity			
4DGLD does not Granger Cause to NRTS 0.851 0.494 H_0 Not Rejected C C T 5NRTS doesn't Granger Cause to DDSLV 0.230 0.921 H_0 Not RejectedExogeneity6DDSLV doesn't Granger Cause to NRTS 0.100 0.982 H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DGLD 0.914 0.457 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO 1.830 0.126 H_0 Not RejectedExogeneity9DCRO doesn't Granger Cause to DDSLV 2.193 0.073 H_0 Not RejectedUnidirectional Causality10DDSLV doesn't Granger Cause to DCRO 4.254 0.002^* H_0 RejectedDDSLV \rightarrow DCRO11DGLD doesn't Granger Cause to DDSLV 3.835 0.005^* H_0 RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD 2.890 0.024^* H_0 RejectedFeedbackNotes: (i) [*] denotes rejection of null hypothesis at 95% confidence level.	3		0.459	0.765	Ho Not Rejected	Exogeneity			
6DDSLV doesn't Granger Cause to NRTS0.1000.982 H_0 Not RejectedExogeneity7DCRO doesn't Granger Cause to DGLD0.9140.457 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO1.8300.126 H_0 Not RejectedExogeneity9DCRO doesn't Granger Cause to DDSLV2.1930.073 H_0 Not RejectedUnidirectional Causality10DDSLV doesn't Granger Cause to DCRO4.2540.002* H_0 RejectedDDSLV \rightarrow DCRO11DGLD doesn't Granger Cause to DDSLV3.8350.005* H_0 RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD2.8900.024* H_0 RejectedFeedbackNotes: (i) [*] denotes rejection of null hypothesis at 95% confidence level.	4		0.851	0.494	Ho Not Rejected	Exogeneity			
6DDSLV doesn't Granger Cause to NRTS0.1000.982 H_0 Not Rejected C 7DCRO doesn't Granger Cause to DGLD0.9140.457 H_0 Not RejectedExogeneity8DGLD doesn't Granger Cause to DCRO1.8300.126 H_0 Not RejectedExogeneity9DCRO doesn't Granger Cause to DDSLV2.1930.073 H_0 Not RejectedUnidirectional Causality10DDSLV doesn't Granger Cause to DCRO4.2540.002* H_0 RejectedDDSLV \rightarrow DCRO11DGLD doesn't Granger Cause to DDSLV3.8350.005* H_0 RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD2.8900.024* H_0 RejectedFeedbackNotes: (i) [*] denotes rejection of null hypothesis at 95% confidence level.	5	NRTS doesn't Granger Cause to DDSLV	0.230	0.921	H _O Not Rejected	Evogonoity			
8DGLD doesn't Granger Cause to DCRO1.8300.126H ₀ Not RejectedExogeneity9DCRO doesn't Granger Cause to DDSLV2.1930.073H ₀ Not RejectedUnidirectional Causality10DDSLV doesn't Granger Cause to DCRO4.2540.002*H ₀ RejectedDDSLV \rightarrow DCRO11DGLD doesn't Granger Cause to DDSLV3.8350.005*H ₀ RejectedBidirectional Causality12DDSLV doesn't Granger Cause to DGLD2.8900.024*H ₀ RejectedFeedbackNotes: (i) [*] denotes rejection of null hypothesis at 95% confidence level.	6	DDSLV doesn't Granger Cause to NRTS	0.100	0.982	Ho Not Rejected	Exogeneity			
8DGLD doesn't Granger Cause to DCRO1.8300.126 H_0 Not Rejected0.00000000000000000000000000000000000	7	DCRO doesn't Granger Cause to DGLD	0.914	0.457	H _O Not Rejected	Evogonaity			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	DGLD doesn't Granger Cause to DCRO	1.830	0.126	Ho Not Rejected	Exogeneity			
11 DGLD doesn't Granger Cause to DDSLV 3.835 0.005* H ₀ Rejected Bidirectional Causality 12 DDSLV doesn't Granger Cause to DGLD 2.890 0.024* H ₀ Rejected Feedback Notes: (i) [*] denotes rejection of null hypothesis at 95% confidence level. Feedback Feedback	9	DCRO doesn't Granger Cause to DDSLV	2.193	0.073	H _O Not Rejected	Unidirectional Causality			
12 DDSLV doesn't Granger Cause to DGLD 2.890 0.024* H ₀ Rejected Feedback Notes: (i) [*] denotes rejection of null hypothesis at 95% confidence level. Feedback Feedback	10	DDSLV doesn't Granger Cause to DCRO	4.254	0.002*	H _O Rejected	DDSLV→DCRO			
Notes: (i) [*] denotes rejection of null hypothesis at 95% confidence level.	11	DGLD doesn't Granger Cause to DDSLV	3.835	0.005*	H _O Rejected	Bidirectional Causality			
	12	DDSLV doesn't Granger Cause to DGLD	2.890	0.024*	Ho Rejected	Feedback			
(ii) No. of Observations: 140 for all the hypotheses	Notes								
(ii) No. of Observations. 140 for an the hypotheses.		(ii) No. of Observations: 140 for all the hypoth	eses.						

Table 7: VAR Framework for NRTS and Selected Macroeconomic Indicators in Multivariate Framework

				NRTS and	Real Econo	mic Indica	tors			
Equ	ation No.	NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DGDP _{t-1}	DGDP _{t-2}	DGDP _{t-3}	DGDP _{t-4}	
1	NRTS t	0.419	-0.234	0.205	-0.139	0.000	0.000	-0.000	-0.000	
1	INKIS _t	(0.000)	(0.007)	(0.017)	(0.095)	(0.398)	(0.445)	(0.285)	(0.032)	
2	DGDP _t	75339.71	24487.16	106551.5	-43904.61	-0.101	-0.079	0.215	0.013	
2	DODF _t	(0.181)	(0.689)	(0.077)	(0.453)	(0.232)	(0.346)	(0.046)	(0.901)	
3	DIIP t	9.549	7.356	18.964	-3.967	0.000	0.000	0.000	-0.000	
3	DIIF _t	(0.419)	(0.566)	(0.133)	(0.746)	(0.254)	(0.000)	(0.001)	(0.137)	
4	DWPI t	1.018	0.781	0.819	0.025	-0.000	-0.000	0.000	-0.000	
4	DWP1 _t	(0.215)	(0.380)	(0.350)	(0.976)	(0.487)	(0.061)	(0.583)	(0.038)	
		DIIP _{t-1}	DIIP _{t-2}	DIIP _{t-3}	DIIP _{t-4}	DWPI _{t-1}	DWPI _{t-2}	DWPI _{t-3}	DWPI _{t-4}	Constant
5	NDTC	0.000	0.001	0.000	-0.000	-0.002	-0.000	0.013	-0.024	0.013
3	NRTS t	(0.377)	(0.128)	(0.474)	(0.621)	(0.725)	(1.000)	(0.107)	(0.005)	(0.069)
(DCDD	-138.392	-215.753	-332.191	-376.010	-5287.772	558.7191	8530.99	11023.87	3571.18
6	DGDP _t	(0.744)	(0.692)	(0.476)	(0.300)	(0.346)	(0.927)	(0.159)	(0.067)	(0.504)
7	DUD	-0.832	-0.271	0.033	0.058	-3.770	1.621	-0.262	1.700	0.892
7	DIIP _t	(0.000)	(0.017)	(0.731)	(0.441)	(0.001)	(0.202)	(0.836)	(0.178)	(0.426)
0	DWDI	0.009	0.006	0.018	0.014	0.426	-0.016	0.276	-0.139	0.197
8	DWPI t	(0.108)	(0.412)	(0.006)	(0.006)	(0.000)	(0.849)	(0.002)	(0.111)	(0.011)
NRTS	and Forex 1	Market Indica	itors					· · ·		
Ec	uation No.	NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DBOP _{t-1}	DBOP _{t-2}	DBOP _{t-3}	DBOP _{t-4}	
0	NDTO	0.393	-0.309	0.243	-0.183	0.000	0.000	0.000	0.000	
9	NRTS t	(0.000)	(0.001)	(0.011)	(0.046)	(0.027)	(0.048)	(0.002)	(0.077)	
10	DDOD	61864.49		57805.76	-10846.44	-0.169	-0.128	-0.322	-0.047	
10	DBOP t	(0.016)	(0.157)	(0.032)	(0.676)	(0.058)	(0.104)	(0.000)	(0.546)	
	DEVDE	23811 45				0.135	0.196	0.105	-0.052	
11	DFXRE t	(0.448)	(0.399)	(0.516)	(0.122)	(0.215)	(0.042)	(0.261)	(0.589)	
10	DEVDA	-1.157	1.766	-2.128	0.154	-0.000	0.000	-0.000	-0.000	
12	DFXRA	(0.173)	(0.051)	(0.017)	(0.858)	(0.001)	(0.990)	(0.072)	(0.022)	
		DFXRE			DFXRE _{t-4}		DFXRA _{t-2}		DFXRA _{t-4}	Constant
10	NIDTO	-0.000	0.000	0.000	0.000	0.002	-0.011	0.015	-0.009	0.009
13	NRTS t	(0.002)	(0.445)	(0.389)	(0.372)	(0.822)	(0.257)	(0.106)	(0.283)	(0.104)
1.4	DDOD	-0.041	0.028	-0.357	-0.105	-7213.156			-332.834	3448.305
14	DBOP t	(0.575)	(0.695)	(0.000)	(0.236)	(0.012)	(0.205)	(0.026)	(0.899)	(0.043)
1.7	DEVES	0.065	-0.040	0.301	0.062	-2381.83	-4785.984		5511.247	5254.46
15	DFXRE t	(0.476)	(0.649)	(0.002)	(0.568)	(0.499)	(0.185)	(0.013)	(0.087)	(0.012)
1.6	DEVE	0.000	-0.000	0.000	-0.000	0.251	0.081	-0.254	0.178	0.020
16	DFXRA	(0.000)	(0.000)	(0.993)	(0.993)	(0.008)	(0.405)	(0.005)	(0.040)	(0.719)
		(0.000)	(0.000)	(0.775)	(0.775)	(0.000)	(0.105)	(0.005)	(0.010)	(0.71)

E.	S and Money M quation No.	NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DRPR _{t-1}	DRPR _{t-2}	DRPR _{t-3}	DRPR _{t-4}	
	Î	0.461	-0.263	0.236	-0.083	-0.004	-0.011	0.009	-0.013	
17	NRTS t	(0.401)	-0.263 (0.003)	(0.236) (0.011)	-0.083 (0.330)	-0.004 (0.690)	(0.297)	(0.373)	(0.182)	
		-0.579	2.826	-0.527	0.193	-0.307	-0.463	-0.063	0.096	
18	DRPR t									
		(0.423)	(0.000)	(0.512)	(0.794)	(0.001)	(0.000)	(0.501)	(0.277)	
19	DTBR t	-0.175	1.439	-0.713	0.227	0.151	0.077	0.112	0.122	
		(0.778)	(0.031)	(0.305)	(0.722)	(0.055)	(0.358)	(0.169)	(0.109)	
20	DPLR _t	0.102	-0.171	-0.337	0.020	0.011	-0.028	0.023	0.046	
		(0.706)	(0.555)	(0.264)	(0.942)	(0.735)	(0.427)	(0.511)	(0.161)	C t
	1	DTBR _{t-1}	DTBR _{t-2}	DTBR _{t-3}	DTBR _{t-4}	DPLR _{t-1}	DPLR _{t-2}	DPLR _{t-3}	DPLR _{t-4}	Consta
21	NRTS t	0.026	-0.002	-0.004	-0.016	0.005	-0.034	-0.010	0.032	0.005
	, , , , , , , , , , , , , , , , , , ,	(0.038)	(0.832)	(0.735)	(0.209)	(0.852)	(0.226)	(0.675)	(0.188)	(0.262
22	DRPR t	0.177	0.258	0.064	-0.189	0.087	0.266	0.220	-0.567	-0.092
		(0.101)	(0.021)	(0.578)	(0.085)	(0.720)	(0.281)	(0.296)	(0.007)	(0.044
23	DTBR t	0.000	-0.030	0.006	0.017	0.092	-0.048	-0.323	-0.319	-0.007
25	DIDRt	(0.992)	(0.750)	(0.946)	(0.857)	(0.662)	(0.822)	(0.076)	(0.080)	(0.858
24	DPLR _t	0.120	0.123	0.028	-0.038	-0.165	0.261	-0.056	-0.134	0.015
		(0.003)	(0.003)	(0.516)	(0.354)	(0.072)	(0.005)	(0.480)	(0.090)	(0.356
RTS	and Stock Ma	rket Indicato	ors							
	quation No.	NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	FII _{t-1}	FII _{t-2}	FII _{t-3}	FII _{t-4}	
	Ĩ	0.213	-0.083	0.150	-0.200	-0.000	0.000	0.000	-0.000	1
25	NRTS t	(0.045)	(0.432)	(0.147)	(0.018)	(0.754)	(0.807)	(0.616)	(0.100)	
		4433.322	-7759.493	1622.859	-4140.863	0.397	0.000	0.174	-0.222	
26	FII t	(0.692)	(0.487)	(0.882)	(0.643)	(0.000)	(0.997)	(0.144)	(0.051)	
		-534.432	-1664.621	1623.736	-57.936	0.015	-0.013	-0.042	0.019	
27	DTRV _t	(0.711)	(0.247)	(0.247)	(0.960)	(0.278)	(0.374)	(0.006)	(0.178)	
28	DMCP _t	625333.3	-560759	282686.3	-478368.1	4.462	8.394	1.847	-16.264	
	· ·	(0.243)	(0.293)	(0.588)	(0.262)	(0.398)	(0.134)	(0.746)	(0.003)	C i
	1	DTRV _{t-1}	DTRV _{t-2}	DTRV _{t-3}	DTRV _{t-4}	DMCP _{t-1}	DMCP _{t-2}	DMCP _{t-3}	DMCP _{t-4}	Consta
29	NRTS t	-0.000	-0.000	-0.000	-0.000	0.000	-0.000	-0.000	0.000	0.008
_/	THE E	(0.628)	(0.453)	(0.369)	(0.632)	(0.000)	(0.274)	(0.323)	(0.008)	(0.124
30	FII t	0.376	-0.510	-1.851	-1.950	-0.003	0.002	0.001	0.005	1816.5
50	I II t	(0.581)	(0.546)	(0.023)	(0.003)	(0.228)	(0.401)	(0.572)	(0.050)	(0.002
31	DTRV t	-0.773	-0.142	-0.161	-0.153	-0.000	0.000	0.000	-0.000	94.009
51	DIKV _t	(0.000)	(0.191)	(0.122)	(0.066)	(0.517)	(0.135)	(0.134)	(0.518)	(0.218
22	DMCD	15.554	-4.186	11.263	11.477	-0.113	-0.055	0.003	0.399	39194.9
32	DMCP _t	(0.633)	(0.917)	(0.772)	(0.711)	(0.370)	(0.698)	(0.981)	(0.006)	(0.166
						` '	· /			,
VRTS	S and Commodi	itv Market Iı	ndicators							
		ity Market II		NRTS, 2	NRTS. 4	DCRO.	DCRO ₆₂	DCRO _{6.2}	DCRO. 4	
Ec	quation No.	NRTS _{t-1}	NRTS _{t-2}	NRTS _{t-3}	NRTS _{t-4}	DCRO _{t-1}	DCRO _{t-2}	DCRO _{t-3}	DCRO _{t-4}	
		NRTS _{t-1} 0.389	NRTS _{t-2} -0.218	0.203	-0.059	-0.000	0.001	0.000	-0.002	
Ec	quation No. NRTS t	NRTS _{t-1} 0.389 (0.000)	NRTS _{t-2} -0.218 (0.016)	0.203 (0.024)	-0.059 (0.488)	-0.000 (0.936)	0.001 (0.217)	0.000 (0.660)	-0.002 (0.035)	
Ec	quation No.	NRTS _{t-1} 0.389 (0.000) 5.997	NRTS _{t-2} -0.218 (0.016) -3.605	0.203 (0.024) -4.714	-0.059 (0.488) 14.406	-0.000 (0.936) 0.234	0.001 (0.217) 0.384	0.000 (0.660) -0.142	-0.002 (0.035) -0.164	
Ес 33	quation No. NRTS t	NRTS _{t-1} 0.389 (0.000) 5.997 (0.360)	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598)	0.203 (0.024) -4.714 (0.486)	-0.059 (0.488) 14.406 (0.026)	-0.000 (0.936) 0.234 (0.007)	0.001 (0.217) 0.384 (0.000)	0.000 (0.660) -0.142 (0.123)	-0.002 (0.035) -0.164 (0.060)	
Ес 33	quation No. NRTS t	NRTS _{t-1} 0.389 (0.000) 5.997 (0.360) -75.313	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598) 745.753	0.203 (0.024) -4.714 (0.486) 277.359	-0.059 (0.488) 14.406 (0.026) -155.472	-0.000 (0.936) 0.234 (0.007) -3.816	0.001 (0.217) 0.384 (0.000) -6.955	0.000 (0.660) -0.142 (0.123) -10.459	-0.002 (0.035) -0.164 (0.060) 9.701	
Ec 33 34	quation No. NRTS t DCRO t	NRTS _{t-1} 0.389 (0.000) 5.997 (0.360) -75.313 (0.888)	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598) 745.753 (0.181)	$\begin{array}{c} 0.203 \\ (0.024) \\ -4.714 \\ (0.486) \\ 277.359 \\ (0.615) \end{array}$	-0.059 (0.488) 14.406 (0.026) -155.472 (0.768)	-0.000 (0.936) 0.234 (0.007) -3.816 (0.590)	$\begin{array}{c} 0.001\\ (0.217)\\ 0.384\\ (0.000)\\ -6.955\\ (0.350) \end{array}$	$\begin{array}{c} 0.000\\ (0.660)\\ -0.142\\ (0.123)\\ -10.459\\ (0.165) \end{array}$	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173)	
Ec 33 34 35	quation No. NRTS t DCRO t DGLD t	NRTS _{t-1} 0.389 (0.000) 5.997 (0.360) -75.313 (0.888) -508.378	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598) 745.753 (0.181) 1867.443	$\begin{array}{r} 0.203\\ (0.024)\\ -4.714\\ (0.486)\\ 277.359\\ (0.615)\\ -16.116\end{array}$	-0.059 (0.488) 14.406 (0.026) -155.472 (0.768) 771.755	-0.000 (0.936) 0.234 (0.007) -3.816 (0.590) -36.230	0.001 (0.217) 0.384 (0.000) -6.955 (0.350) 8.750	$\begin{array}{r} 0.000\\ (0.660)\\ -0.142\\ (0.123)\\ -10.459\\ (0.165)\\ -43.974 \end{array}$	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527	
Ec 33 34 35	quation No. NRTS t DCRO t	NRTS _{t-1} 0.389 (0.000) 5.997 (0.360) -75.313 (0.888) -508.378 (0.750)	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598) 745.753 (0.181) 1867.443 (0.263)	$\begin{array}{c} 0.203 \\ (0.024) \\ -4.714 \\ (0.486) \\ 277.359 \\ (0.615) \\ -16.116 \\ (0.992) \end{array}$	-0.059 (0.488) 14.406 (0.026) -155.472 (0.768) 771.755 (0.624)	-0.000 (0.936) 0.234 (0.007) -3.816 (0.590) -36.230 (0.088)	0.001 (0.217) 0.384 (0.000) -6.955 (0.350) 8.750 (0.695)	0.000 (0.660) -0.142 (0.123) -10.459 (0.165) -43.974 (0.051)	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527 (0.588)	
Ec 33 34 35	quation No. NRTS t DCRO t DGLD t	$\begin{array}{c} {\rm NRTS}_{\rm t-1} \\ 0.389 \\ (0.000) \\ 5.997 \\ (0.360) \\ -75.313 \\ (0.888) \\ -508.378 \\ (0.750) \\ {\rm DGLD}_{\rm t-1} \end{array}$	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598) 745.753 (0.181) 1867.443 (0.263) DGLD _{t-2}	$\begin{array}{c} 0.203\\ (0.024)\\ -4.714\\ (0.486)\\ 277.359\\ (0.615)\\ -16.116\\ (0.992)\\ DGLD_{t-3} \end{array}$	$\begin{array}{c} -0.059 \\ (0.488) \\ 14.406 \\ (0.026) \\ -155.472 \\ (0.768) \\ 771.755 \\ (0.624) \\ DGLD_{t-4} \end{array}$	-0.000 (0.936) 0.234 (0.007) -3.816 (0.590) -36.230	0.001 (0.217) 0.384 (0.000) -6.955 (0.350) 8.750 (0.695) DDSLV _{t-2}	0.000 (0.660) -0.142 (0.123) -10.459 (0.165) -43.974 (0.051) DDSLV _{L3}	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527	
Ec 33 34 35 36	quation No. NRTS t DCRO t DGLD t DDSLV t	$\begin{array}{c} {\rm NRTS}_{\rm t-1} \\ {\rm 0.389} \\ {\rm (0.000)} \\ {\rm 5.997} \\ {\rm (0.360)} \\ {\rm -75.313} \\ {\rm (0.888)} \\ {\rm -508.378} \\ {\rm (0.750)} \\ {\rm DGLD}_{\rm t-1} \\ {\rm -0.000} \end{array}$	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598) 745.753 (0.181) 1867.443 (0.263) DGLD _{t-2} 0.000	$\begin{array}{c} 0.203\\ (0.024)\\ -4.714\\ (0.486)\\ 277.359\\ (0.615)\\ -16.116\\ (0.992)\\ \hline DGLD_{t-3}\\ 0.000\\ \end{array}$	-0.059 (0.488) 14.406 (0.026) -155.472 (0.768) 771.755 (0.624)	-0.000 (0.936) 0.234 (0.007) -3.816 (0.590) -36.230 (0.088) DDSLV _{t-1} 0.000	0.001 (0.217) 0.384 (0.000) -6.955 (0.350) 8.750 (0.695) DDSLV _{t-2} -0.000	0.000 (0.660) -0.142 (0.123) -10.459 (0.165) -43.974 (0.051) DDSLV _{t-3} 0.000	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527 (0.588) DDSLV _{t-4} -0.000	0.006
Ec 33 34 35 36	quation No. NRTS t DCRO t DGLD t	$\begin{array}{c} {\rm NRTS}_{\rm t-1} \\ 0.389 \\ (0.000) \\ 5.997 \\ (0.360) \\ -75.313 \\ (0.888) \\ -508.378 \\ (0.750) \\ {\rm DGLD}_{\rm t-1} \end{array}$	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598) 745.753 (0.181) 1867.443 (0.263) DGLD _{t-2}	$\begin{array}{c} 0.203\\ (0.024)\\ -4.714\\ (0.486)\\ 277.359\\ (0.615)\\ -16.116\\ (0.992)\\ DGLD_{t-3} \end{array}$	$\begin{array}{c} -0.059 \\ (0.488) \\ 14.406 \\ (0.026) \\ -155.472 \\ (0.768) \\ 771.755 \\ (0.624) \\ DGLD_{t-4} \end{array}$	-0.000 (0.936) 0.234 (0.007) -3.816 (0.590) -36.230 (0.088) DDSLV _{t-1}	0.001 (0.217) 0.384 (0.000) -6.955 (0.350) 8.750 (0.695) DDSLV _{t-2}	0.000 (0.660) -0.142 (0.123) -10.459 (0.165) -43.974 (0.051) DDSLV _{L3}	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527 (0.588) DDSLV _{t-4}	0.006
Ec 33 34 35 36 37	quation No. NRTS t DCRO t DGLD t DDSLV t NRTS t	$\begin{array}{c} {\rm NRTS}_{\rm t-1} \\ {\rm 0.389} \\ {\rm (0.000)} \\ {\rm 5.997} \\ {\rm (0.360)} \\ {\rm -75.313} \\ {\rm (0.888)} \\ {\rm -508.378} \\ {\rm (0.750)} \\ {\rm DGLD}_{\rm t-1} \\ {\rm -0.000} \end{array}$	NRTS _{t-2} -0.218 (0.016) -3.605 (0.598) 745.753 (0.181) 1867.443 (0.263) DGLD _{t-2} 0.000	$\begin{array}{c} 0.203\\ (0.024)\\ -4.714\\ (0.486)\\ 277.359\\ (0.615)\\ -16.116\\ (0.992)\\ \hline DGLD_{t-3}\\ 0.000\\ \end{array}$	$\begin{array}{c} -0.059 \\ (0.488) \\ 14.406 \\ (0.026) \\ -155.472 \\ (0.768) \\ 771.755 \\ (0.624) \\ \hline DGLD_{t-4} \\ 0.000 \\ \end{array}$	-0.000 (0.936) 0.234 (0.007) -3.816 (0.590) -36.230 (0.088) DDSLV _{t-1} 0.000	0.001 (0.217) 0.384 (0.000) -6.955 (0.350) 8.750 (0.695) DDSLV _{t-2} -0.000	0.000 (0.660) -0.142 (0.123) -10.459 (0.165) -43.974 (0.051) DDSLV _{t-3} 0.000	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527 (0.588) DDSLV _{t-4} -0.000	0.006
Ec 33 34 35 36	quation No. NRTS t DCRO t DGLD t DDSLV t	$\begin{array}{c} {\rm NRTS}_{\rm t-1} \\ {\rm 0.389} \\ {\rm (0.000)} \\ {\rm 5.997} \\ {\rm (0.360)} \\ {\rm -75.313} \\ {\rm (0.888)} \\ {\rm -508.378} \\ {\rm (0.750)} \\ {\rm DGLD}_{\rm t-1} \\ {\rm -0.000} \\ {\rm (0.038)} \\ {\rm -0.002} \end{array}$	$\begin{array}{c} NRTS_{t-2} \\ -0.218 \\ (0.016) \\ -3.605 \\ (0.598) \\ 745.753 \\ (0.181) \\ 1867.443 \\ (0.263) \\ DGLD_{t-2} \\ 0.000 \\ (0.065) \\ 0.000 \\ \end{array}$	$\begin{array}{c} 0.203\\ (0.024)\\ -4.714\\ (0.486)\\ 277.359\\ (0.615)\\ -16.116\\ (0.992)\\ \hline DGLD_{t-3}\\ 0.000\\ (0.897)\\ -0.001\\ \end{array}$	$\begin{array}{c} -0.059 \\ (0.488) \\ 14.406 \\ (0.026) \\ -155.472 \\ (0.768) \\ 771.755 \\ (0.624) \\ \hline DGLD_{t-4} \\ 0.000 \\ (0.737) \\ \hline 0.003 \end{array}$	$\begin{array}{c} -0.000\\ (0.936)\\ 0.234\\ (0.007)\\ -3.816\\ (0.590)\\ -36.230\\ (0.088)\\ \hline \text{DDSLV}_{t-1}\\ 0.000\\ (0.075)\\ \hline 0.001\\ \end{array}$	0.001 (0.217) 0.384 (0.000) -6.955 (0.350) 8.750 (0.695) DDSLV _{t-2} -0.000 (0.852) -0.000	$\begin{array}{c} 0.000\\ (0.660)\\ -0.142\\ (0.123)\\ -10.459\\ (0.165)\\ -43.974\\ (0.051)\\ \hline \text{DDSLV}_{t-3}\\ 0.000\\ (0.786)\\ \hline 0.001\\ \end{array}$	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527 (0.588) DDSLV _{t-4} -0.000 (0.951) 0.001	Consta 0.006 (0.293 0.127 (0.779
Ec 33 34 35 36 37 38	quation No. NRTS t DCRO t DGLD t DDSLV t NRTS t DCRO t	$\begin{array}{c} {\color{black} NRTS_{t-1}} \\ 0.389 \\ (0.000) \\ 5.997 \\ (0.360) \\ -75.313 \\ (0.888) \\ -508.378 \\ (0.750) \\ \hline DGLD_{t-1} \\ -0.000 \\ (0.038) \\ -0.002 \\ (0.146) \\ \end{array}$	$\begin{array}{c} NRTS_{t-2} \\ -0.218 \\ (0.016) \\ -3.605 \\ (0.598) \\ 745.753 \\ (0.181) \\ 1867.443 \\ (0.263) \\ DGLD_{t-2} \\ 0.000 \\ (0.065) \\ 0.000 \\ (0.547) \\ \end{array}$	$\begin{array}{c} 0.203 \\ (0.024) \\ -4.714 \\ (0.486) \\ 277.359 \\ (0.615) \\ -16.116 \\ (0.992) \\ \hline DGLD_{t-3} \\ 0.000 \\ (0.897) \\ -0.001 \\ (0.225) \end{array}$	$\begin{array}{c} -0.059 \\ (0.488) \\ 14.406 \\ (0.026) \\ -155.472 \\ (0.768) \\ 771.755 \\ (0.624) \\ \hline DGLD_{t-4} \\ 0.000 \\ (0.737) \\ 0.003 \\ (0.015) \end{array}$	$\begin{array}{c} -0.000\\ (0.936)\\ 0.234\\ (0.007)\\ -3.816\\ (0.590)\\ -36.230\\ (0.088)\\ \hline \text{DDSLV}_{t-1}\\ 0.000\\ (0.075)\\ \hline 0.001\\ (0.040)\\ \end{array}$	$\begin{array}{c} 0.001 \\ (0.217) \\ 0.384 \\ (0.000) \\ -6.955 \\ (0.350) \\ 8.750 \\ (0.695) \\ \hline DDSLV_{t-2} \\ -0.000 \\ (0.852) \\ -0.000 \\ (0.914) \end{array}$	$\begin{array}{c} 0.000\\ (0.660)\\ -0.142\\ (0.123)\\ -10.459\\ (0.165)\\ -43.974\\ (0.051)\\ \hline \text{DDSLV}_{\text{t-3}}\\ 0.000\\ (0.786)\\ \hline 0.001\\ (0.001)\\ \end{array}$	$\begin{array}{c} -0.002\\ (0.035)\\ -0.164\\ (0.060)\\ 9.701\\ (0.173)\\ -11.527\\ (0.588)\\ \overline{\text{DDSLV}_{\text{L}4}}\\ -0.000\\ (0.951)\\ 0.001\\ (0.013)\\ \end{array}$	0.006 (0.293 0.127 (0.779
Ec 33 34 35 36 37	quation No. NRTS t DCRO t DGLD t DDSLV t NRTS t	$\begin{array}{c} {\rm NRTS}_{\rm t-1} \\ 0.389 \\ (0.000) \\ 5.997 \\ (0.360) \\ -75.313 \\ (0.888) \\ -508.378 \\ (0.750) \\ {\rm DGLD}_{\rm t-1} \\ -0.000 \\ (0.038) \\ -0.002 \\ (0.146) \\ -0.254 \end{array}$	$\begin{array}{c} NRTS_{t-2} \\ -0.218 \\ (0.016) \\ -3.605 \\ (0.598) \\ 745.753 \\ (0.181) \\ 1867.443 \\ (0.263) \\ DGLD_{t-2} \\ 0.000 \\ (0.065) \\ 0.000 \\ (0.547) \\ 0.026 \end{array}$	$\begin{array}{c} 0.203 \\ (0.024) \\ -4.714 \\ (0.486) \\ 277.359 \\ (0.615) \\ -16.116 \\ (0.992) \\ \hline DGLD_{t-3} \\ 0.000 \\ (0.897) \\ -0.001 \\ (0.225) \\ -0.035 \\ \end{array}$	$\begin{array}{c} -0.059 \\ (0.488) \\ 14.406 \\ (0.026) \\ -155.472 \\ (0.768) \\ 771.755 \\ (0.624) \\ \hline DGLD_{t-4} \\ 0.000 \\ (0.737) \\ 0.003 \\ (0.015) \\ \hline 0.188 \end{array}$	$\begin{array}{c} -0.000\\ (0.936)\\ 0.234\\ (0.007)\\ -3.816\\ (0.590)\\ -36.230\\ (0.088)\\ \hline \text{DDSLV}_{t-1}\\ 0.000\\ (0.075)\\ \hline 0.001\\ (0.040)\\ \hline 0.131\\ \end{array}$	$\begin{array}{c} 0.001 \\ (0.217) \\ 0.384 \\ (0.000) \\ -6.955 \\ (0.350) \\ 8.750 \\ (0.695) \\ \hline DDSLV_{t-2} \\ -0.000 \\ (0.852) \\ -0.000 \\ (0.914) \\ 0.066 \end{array}$	$\begin{array}{c} 0.000\\ (0.660)\\ -0.142\\ (0.123)\\ -10.459\\ (0.165)\\ -43.974\\ (0.051)\\ \hline \text{DDSLV}_{\text{t-3}}\\ 0.000\\ (0.786)\\ \hline 0.001\\ (0.001)\\ \hline 0.131\\ \end{array}$	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527 (0.588) DDSLV ₁₋₄ -0.000 (0.951) 0.001 (0.013) 0.050	0.006 (0.293 0.127 (0.779 118.28
Ec 33 34 35 36 37 38 39	quation No. NRTS t DCRO t DGLD t DDSLV t NRTS t DCRO t DGLD t	$\begin{array}{c} {\rm NRTS}_{\rm t-1} \\ 0.389 \\ (0.000) \\ 5.997 \\ (0.360) \\ -75.313 \\ (0.888) \\ -508.378 \\ (0.750) \\ {\rm DGLD}_{\rm t-1} \\ -0.000 \\ (0.038) \\ -0.002 \\ (0.146) \\ -0.254 \\ (0.029) \\ \end{array}$	$\begin{array}{c} NRTS_{t-2} \\ -0.218 \\ (0.016) \\ -3.605 \\ (0.598) \\ 745.753 \\ (0.181) \\ 1867.443 \\ (0.263) \\ DGLD_{t-2} \\ 0.000 \\ (0.065) \\ 0.000 \\ (0.547) \\ 0.026 \\ (0.819) \\ \end{array}$	$\begin{array}{c} 0.203\\ (0.024)\\ -4.714\\ (0.486)\\ 277.359\\ (0.615)\\ -16.116\\ (0.992)\\ \hline DGLD_{t-3}\\ 0.000\\ (0.897)\\ -0.001\\ (0.225)\\ -0.035\\ (0.763)\\ \end{array}$	$\begin{array}{c} -0.059\\ (0.488)\\ 14.406\\ (0.026)\\ -155.472\\ (0.768)\\ 771.755\\ (0.624)\\ \hline DGLD_{t-4}\\ 0.000\\ (0.737)\\ 0.003\\ (0.015)\\ \hline 0.188\\ (0.100)\\ \end{array}$	$\begin{array}{c} -0.000\\ (0.936)\\ 0.234\\ (0.007)\\ -3.816\\ (0.590)\\ -36.230\\ (0.088)\\ \hline \text{DDSLV}_{t-1}\\ 0.000\\ (0.075)\\ \hline 0.001\\ (0.040)\\ 0.131\\ (0.002)\\ \end{array}$	$\begin{array}{c} 0.001\\ (0.217)\\ 0.384\\ (0.000)\\ -6.955\\ (0.350)\\ 8.750\\ (0.695)\\ \hline \text{DDSLV}_{t-2}\\ -0.000\\ (0.852)\\ -0.000\\ (0.914)\\ 0.066\\ (0.132)\\ \end{array}$	$\begin{array}{c} 0.000\\ (0.660)\\ -0.142\\ (0.123)\\ -10.459\\ (0.165)\\ -43.974\\ (0.051)\\ \hline \text{DDSLV}_{t-3}\\ 0.000\\ (0.786)\\ \hline 0.001\\ (0.001)\\ \hline 0.131\\ (0.004)\\ \end{array}$	$\begin{array}{c} -0.002\\ (0.035)\\ -0.164\\ (0.060)\\ 9.701\\ (0.173)\\ -11.527\\ (0.588)\\ \hline \text{DDSLV}_{t-4}\\ -0.000\\ (0.951)\\ 0.001\\ (0.013)\\ 0.050\\ (0.137)\\ \end{array}$	0.006 (0.293 0.127 (0.779 118.28 (0.001
Ec 33 34 35 36 37 38	quation No. NRTS t DCRO t DGLD t DDSLV t NRTS t DCRO t	$\begin{array}{c} {\rm NRTS}_{\rm t-1} \\ 0.389 \\ (0.000) \\ 5.997 \\ (0.360) \\ -75.313 \\ (0.888) \\ -508.378 \\ (0.750) \\ {\rm DGLD}_{\rm t-1} \\ -0.000 \\ (0.038) \\ -0.002 \\ (0.146) \\ -0.254 \end{array}$	$\begin{array}{c} NRTS_{t-2} \\ -0.218 \\ (0.016) \\ -3.605 \\ (0.598) \\ 745.753 \\ (0.181) \\ 1867.443 \\ (0.263) \\ DGLD_{t-2} \\ 0.000 \\ (0.065) \\ 0.000 \\ (0.547) \\ 0.026 \end{array}$	$\begin{array}{c} 0.203 \\ (0.024) \\ -4.714 \\ (0.486) \\ 277.359 \\ (0.615) \\ -16.116 \\ (0.992) \\ \hline DGLD_{t-3} \\ 0.000 \\ (0.897) \\ -0.001 \\ (0.225) \\ -0.035 \\ \end{array}$	$\begin{array}{c} -0.059 \\ (0.488) \\ 14.406 \\ (0.026) \\ -155.472 \\ (0.768) \\ 771.755 \\ (0.624) \\ \hline DGLD_{t-4} \\ 0.000 \\ (0.737) \\ 0.003 \\ (0.015) \\ \hline 0.188 \end{array}$	$\begin{array}{c} -0.000\\ (0.936)\\ 0.234\\ (0.007)\\ -3.816\\ (0.590)\\ -36.230\\ (0.088)\\ \hline \text{DDSLV}_{t-1}\\ 0.000\\ (0.075)\\ \hline 0.001\\ (0.040)\\ \hline 0.131\\ \end{array}$	$\begin{array}{c} 0.001 \\ (0.217) \\ 0.384 \\ (0.000) \\ -6.955 \\ (0.350) \\ 8.750 \\ (0.695) \\ \hline DDSLV_{t-2} \\ -0.000 \\ (0.852) \\ -0.000 \\ (0.914) \\ 0.066 \end{array}$	$\begin{array}{c} 0.000\\ (0.660)\\ -0.142\\ (0.123)\\ -10.459\\ (0.165)\\ -43.974\\ (0.051)\\ \hline \text{DDSLV}_{\text{t-3}}\\ 0.000\\ (0.786)\\ \hline 0.001\\ (0.001)\\ \hline 0.131\\ \end{array}$	-0.002 (0.035) -0.164 (0.060) 9.701 (0.173) -11.527 (0.588) DDSLV ₁₋₄ -0.000 (0.951) 0.001 (0.013) 0.050	0.006 (0.293 0.127

In order to develop an appropriate causality model for predicting the behavior of NRTS caused due to selected macroeconomic variables an attempt was made to examine causal relation among all the explanatory and explained variables. The causality matrix (tables 8) indicated following relations.

- NRTS is Granger cause to DBOP and DRPR
- DGDP is Granger cause to DIIP, DWPI, FII and DMCP
- DIIP is Granger cause to DWPI, DFXRA, DTBR, DPLR, FII, DTRV, DCRO and DGLD

- DWPI is Granger cause to DIIP, DBOP, DTBR, DPLR, DCRO and DDSLV
- DBOP is Granger cause to NRTS, DIIP, DFXRE, DMCP, DCRO and DGLD
- DFXRE is Granger cause to DIIP, WPI, DBOP, DFXRA and DPLR
- DFXRA is Granger cause to DWPI, DBOP, DFXRE, DTRV and DMCP
- DRPR is not a Granger cause to any variable.
- DTBR is Granger cause to DGDP, DRPR, DPLR, FII and DTRV
- DPLR is Granger cause to DGDP, DRPR and DCRO
- FII is Granger cause to DGDP, DIIP, DWPI, DFXRA, DTBR, DMCP and DCRO
- DTRV is Granger cause to DIIP, DFXRA, FII and DDSLV
- DMCP is Granger cause to NRTS, DIIP, DWPI, DBOP, DFXRE, DFXRA, DCRO and DGLD

- DCRO is Granger cause to DWPI, DRPR, DTBR, DPLR and DMCP
- DGLD is Granger cause to DIIP, DWPI, DFXRE, DTRV and DDSLV
- DDSLV is Granger cause to DFXRE, DCRO and DGLD

The results of Granger causality are neither exhaustive not coincide with the theoretical foundations and literature available on economic relation among these variables, hence do not seem capable of further analysis for examining impact of macroeconomic determinants on stock market volatility. Although, some statements are in line with the fundamentals of economic theory, but others are illusionary. To cite, DCRO affects DRPR, DTBR and DPLR. Economic theory suggests no causal relationship between an internationally traded commodity and the interest rates structure that exists in the domestic money market.

-														-		
	NRTS	DGDP	DIIP	DWPI	DBOP	DFXRE	DFXRA	DRPR	DTBR	DPLR	FII	DTRV	DMCP	DCRO	DGLD	DDSLV
NRTS		1.019	0.968	1.637	2.932	1.8231	1.207	3.702	1.444	0.498	0.649	0.292	0.729	1.387	0.459	0.230
\rightarrow		(0.39)	(0.42)	(0.16)	(0.02)*	(0.12)	(0.31)	(0.00)*	(0.22)	(0.73)	(0.62)	(0.88)	(0.57)	(0.24)	(0.76)	(0.92)
DGDP	0.912		25.490	2.905	0.827	0.930	1.583	0.118	0.275	0.355	2.958	2.035	4.423	0.328	1.662	1.334
\rightarrow	(0.45)		(0.00)*	(0.02)*	(0.50)	(0.44)	(0.18)	(0.97)	(0.89)	(0.83)	$(0.02)^*$	(0.09)	(0.00)*	(0.85)	(0.16)	(0.26)
DIIP	0.046	0.690		4.618	0.240	0.325	2.851	0.258	3.646	2.770	2.425	3.892	1.433	2.753	2.388	1.770
\rightarrow	(0.99)	(0.59)		(0.00)*	(0.91)	(0.86)	$(0.02)^{*}$	(0.90)	$(0.00)^{*}$	$(0.02)^{*}$	$(0.05)^*$	$(0.00)^{*}$	(0.22)	(0.03)*	(0.05)*	(0.13)
DWPI	1.521	2.270	3.515		5.885	1.876	1.200	2.217	4.013	3.503	0.477	0.797	1.223	4.761	1.491	2.689
\rightarrow	(0.19)	(0.06)	(0.00)*		(0.00)*	(0.11)	(0.31)	(0.07)	(0.00)*	$(0.00)^{*}$	(0.75)	(0.52)	(0.30)	(0.00)*	(0.20)	$(0.03)^{*}$
DBOP	2.373	0.005	2.970	0.946		3.457	1.978	0.216	1.253	0.578	0.698	0.956	2.443	2.564	3.382	2.235
\rightarrow	(0.05)*	(0.99)	$(0.02)^{*}$	(0.43)		$(0.01)^{*}$	(0.10)	(0.92)	(0.29)	(0.67)	(0.59)	(0.43)	$(0.04)^{*}$	$(0.04)^{*}$	$(0.01)^{*}$	(0.06)
DFXRE	1.316	0.592	2.331	4.465	5.825		8.225	1.527	1.815	4.110	0.428	0.234	1.050	1.987	1.357	1.097
\rightarrow	(0.26)	(0.66)	(0.05)*	$(0.00)^{*}$	(0.00)*		(0.00)*	(0.19)	(0.12)	(0.00)*	(0.78)	(0.91)	(0.38)	(0.10)	(0.25)	(0.36)
DFXRA	1.110	0.394	1.091	2.614	3.931	5.026		1.737	1.308	1.373	0.929	2.873	3.118	1.723	1.045	1.616
\rightarrow	(0.35)	(0.81)	(0.36)	$(0.03)^{*}$	(0.00)*	$(0.00)^{*}$		(0.14)	(0.27)	(0.24)	(0.44)	$(0.02)^{*}$	$(0.01)^{*}$	(0.14)	(0.38)	(0.17)
DRPR	1.846	1.489	0.188	2.179	0.891	1.089	0.187		0.843	1.453	0.110	1.070	0.719	0.866	0.264	0.269
\rightarrow	(0.12)	(0.20)	(0.94)	(0.07)	(0.47)	(0.36)	(0.94)		(0.49)	(0.22)	(0.97)	(0.37)	(0.57)	(0.48)	(0.90)	(0.89)
DTBR	2.045	3.226	0.818	1.603	0.959	0.687	0.731	3.874		4.434	4.188	3.307	2.258	1.068	0.826	0.493
\rightarrow	(0.09)	$(0.01)^{*}$	(0.51)	(0.17)	(0.43)	(0.60)	(0.57)	$(0.00)^{*}$		$(0.00)^{*}$	$(0.00)^{*}$	(0.01)*	(0.06)	(0.37)	(0.51)	(0.74)
DPLR	1.128	3.346	0.894	2.320	0.961	1.958	0.270	4.713	1.583		0.330	0.836	0.722	3.140	1.287	1.342
\rightarrow	(0.34)	$(0.01)^{*}$	(0.46)	(0.06)	(0.43)	(0.10)	(0.89)	$(0.00)^{*}$	(0.18)		(0.85)	(0.50)	(0.57)	$(0.01)^{*}$	(0.27)	(0.25)
FII	2.096	4.983	4.483	4.145	0.772	1.441	3.843	1.845	2.339	1.129		1.617	3.132	6.792	1.739	1.886
\rightarrow	(0.08)	(0.00)*	$(0.00)^{*}$	$(0.00)^{*}$	(0.54)	(0.22)	$(0.00)^{*}$	(0.12)	$(0.05)^{*}$	(0.34)		(0.17)	$(0.01)^{*}$	$(0.00)^{*}$	(0.14)	(0.11)
DTRV	0.674	1.462	3.546	0.354	0.852	1.009	3.167	0.212	0.141	1.808	2.677		0.397	0.543	1.070	4.002
\rightarrow	(0.61)	(0.21)	(0.00)*	(0.84)	(0.49)	(0.40)	$(0.01)^{*}$	(0.93)	(0.96)	(0.13)	(0.03)*		(0.81)	(0.70)	(0.37)	(0.00)*
DMCP	9.236	1.518	2.546	2.824	3.692	3.831	5.163	1.495	1.743	1.801	2.156	0.422		2.439	2.651	1.224
\rightarrow	$(0.00)^{*}$	(0.20)	$(0.04)^{*}$	$(0.02)^{*}$	(0.00)*	$(0.00)^{*}$	< /	(0.20)	(0.14)	(0.13)	(0.07)	(0.79)		$(0.05)^{*}$	$(0.03)^{*}$	(0.30)
DCRO	1.596	1.635	0.634	8.658	2.023	0.759	0.928	5.268	5.441	2.490	0.664	1.652	2.982		0.914	2.193
\rightarrow	(0.17)	(0.16)	(0.63)	$(0.00)^{*}$	(0.09)	(0.55)	(0.44)	$(0.00)^{*}$	$(0.00)^{*}$	$(0.04)^{*}$	(0.61)	(0.16)	$(0.02)^{*}$		(0.45)	(0.07)
DGLD	0.851	0.863	2.381	4.515	0.356	2.409	0.909	0.462	1.906	2.024	0.529	3.116	0.257	1.830		3.835
\rightarrow	(0.49)	(0.48)	(0.05)*	(0.00)*	(0.83)	$(0.05)^{*}$	(0.46)	(0.76)	(0.11)	(0.09)	(0.71)	(0.01)*	(0.90)	(0.12)		$(0.00)^{*}$
DDSLV	0.100	0.144	1.628	1.701	0.891	2.793	1.221	0.223	0.979	1.292	1.145	1.345	0.689	4.254	2.890	
\rightarrow	(0.98)	(0.96)	(0.17)	(0.15)	(0.47)	$(0.02)^{*}$	(0.30)	(0.92)	(0.42)	(0.27)	(0.33)	(0.25)	(0.60)	(0.00)*	$(0.02)^{*}$	
Notes:	(i) [*] de	enotes re	jection o	of null hy	pothesis	at 95%	confiden	ce level.	(ii) No.	of Obse	rvations	140.				
	(iii) [-) shows	the direct	ction of o	causality	hypothe	esized.									

]	Fable 8	8: Cau	sality I	Matrix	for all	l Exp	lanatory	y and l	Explai	ned Va	riable	S

To look into the association of macroeconomic environment of the country and stock market performance, as discussed earlier, the study used DCC MGARCH model. The basic requirements of DCC MGARCH model are: (i) Q_t should always be a stationary time series, and (ii) Wald Chi² test must reject the null hypothesis that all the coefficients on the independent variables in the mean equations are zero. The time series data under consideration is already declared stationary (table 2). The results of Wald Chi² test presented in table 9 show that null hypothesis for all the variables under consideration are rejected at the 1 percent level of significance. Thus, the coefficients on all the independent variables one-by-one in the mean equations are non-zero.

S.	DCC-MGARCH	Wald Chi ² -	P-value
No.	Model	statistics	
1.	NRTS and DGDP	96.470	0.000*
2.	NRTS and DIIP	97.570	0.000*
3.	NRTS and DWPI	26.420	0.000*
4.	NRTS and DBOP	21.260	0.000*
5.	NRTS and DFXRE	274.330	0.000*
6.	NRTS and DFXRA	275.370	0.000*
7.	NRTS and DRPR	186.300	0.000*
8.	NRTS and DTBR	370.640	0.000*
9.	NRTS and DPLR	20541.700	0.000*
10.	NRTS and FII	384.050	0.000*
11.	NRTS and DTRV	164.320	0.000*
12.	NRTS and DMCP	589.530	0.000*
13.	NRTS and DCRO	347.730	0.000*
14.	NRTS and DGLD	187.310	0.000*
15.	NRTS and DDSLV	226.230	0.000*
	: [*] denotes rejection lence level.	of null hypoth	esis at 99

Table 9: Results of Wald Chi² Test for DCC-MGARCH Models

The results of DCC MGARCH models for NRTS and selected macroeconomic indicators group-wise (i.e., Real Economic Indicators, Forex Market Indicators, Money Market Indicators, Stock Market Indicators, and Commodity Market Indicators) presented in table 10 indicate that:

- Each of the univariate ARCH, univariate GARCH and DCC parameters of all the macroeconomic indicators under consideration, except WPI (significant at 4 percent) and TBR (significant at 2 percent) is statistically significant at 1 percent level of significance.
- The Dynamic Conditional Correlation Coefficient is positive for almost all the variables. It indicates that macroeconomic variables under study and stock market indicators (NRTS) rise or fall in the same direction. Negative DCC coefficients for DGDP, DWPI, DFXRA and DPLR are the signposts of their negative relation with NRTS.
- The estimates for adjustment parameters λ_1 and λ_2 are also statistically significant and satisfy the condition of $0 \le \lambda_1 + \lambda_2 < 1$ for all the DCC MGARCH models for NRTS and macroeconomic indicators. All this indicate that the assumption of time-invariant conditional correlations maintained in the DCC MGARCH models is restrictive.

Table 10: Results of DCC MGARCH (1,1) Models

Widdels									
NRTS and Real Economy Indicators									
	Coefficient	SE	Z-statistics	P-value					
NRTS and DGDP									
ARCH_NRTS									
ARCH (1,1)	0.041	0.133	0.320	0.000*					
GARCH (1,1)	-0.097	0.842	-0.120	0.000*					
ARCH_DGDP									
ARCH (1,1)	-0.064	0.051	-0.110	0.000*					
GARCH (1,1)	-0.089	0.053	-0.140	0.000*					
Dynamic Condit	ional Correlation	on							

/				
Rho	-0.079	0.109	-0.730	0.000
λ_1	0.048	0.465	0.100	0.000
λ_2	0.103	1.120	0.090	0.000
ARCH NRTS	NKIS	and DIIP		
ARCH_INK13	0.065	0.059	1.100	0.001*
GARCH (1,1)	0.795	0.116	6.830	0.000*
ARCH DIIP		0.000		
ARCH (1,1)	0.124	0.041	3.030	0.002*
GARCH (1,1)	0.899	0.043	20.550	0.000*
Dynamic Condit				
rho	0.089	0.241	0.370	0.001
λ_1	0.025	0.066	0.380	0.001
λ_2	0.926	0.098 and DWP	9.380	0.000
ARCH_NRTS	INKIS		l	
ARCH (1,1)	0.128	0.132	0.970	0.000*
GARCH (1,1)	0.151	0.853	1.310	0.000*
ARCH_DWPI		- I I-		
ARCH (1,1)	0.076	0.037	2.070	0.038
GARCH (1,1)	0.911	0.052	17.400	0.000*
Dynamic Condit				
rho	-0.140	0.095	-1.480	0.000
λ_1	0.134	0.118	1.140	0.000
λ_2 NRTS and Fore	0.003	0.180	0.020	0.001
NK15 and For	Coefficient		Z-statistics	P-value
		and DBOF		I value
ARCH_NRTS				
ARCH (1,1)	0.092	0.077	1.200	0.003*
GARCH (1,1)	0.757	0.166	4.540	0.000*
ARCH_DBOP				
ARCH (1,1)	-0.056	0.001	-45.110	0.000*
GARCH (1,1)	0.235	0.012	3.530	0.000*
Dynamic Condit rho	0.055	0.112	0.500	0.000
λ_1	0.392	0.201	1.950	0.000
$\frac{\lambda_1}{\lambda_2}$	0.060	0.114	0.530	0.002
		and DFXR		0.00-
ARCH_NRTS				
ARCH (1,1)	0.399	0.210	2.540	0.000*
GARCH (1,1)	-0.189	0.001	-1.880	0.000*
ARCH_DFXRE		0.104	2.040	0.000*
ARCH (1,1) GARCH (1,1)	0.322 0.691	0.106	3.040 8.200	0.002*
Dynamic Condit			8.200	0.000*
rho	0.115	0.107	1.070	0.020
λ_1	0.411	0.099	4.120	0.000
λ_1	0.003	0.062	0.050	0.009
		0.062 and DFXR		0.009
λ ₂ ARCH_NRTS	NRTS a			0.009
λ ₂ ARCH_NRTS ARCH (1,1)	NRTS a 0.482	0.151	A 3.190	0.001*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1)	NRTS a 0.482 -0.196	and DFXR	4	1
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DFXRA	NRTS 2 0.482 -0.196	0.151 0.015	A <u>3.190</u> -1.980	0.001*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DFXRA ARCH (1,1)	NRTS a 0.482 -0.196	0.151 0.015 0.015 0.175	A 3.190 -1.980 2.990	0.001* 0.000* 0.003*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DFXRA ARCH (1,1) GARCH (1,1)	NRTS 2 0.482 -0.196 0.526 0.462	0.151 0.015 0.175 0.093	A <u>3.190</u> -1.980	0.001*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DFXRA ARCH (1,1) GARCH (1,1) Dynamic Condit	NRTS & 0.482 -0.196 0.526 0.462 cional Correlat	0.151 0.015 0.175 0.175 0.093 ion	3.190 -1.980 2.990 4.930	0.001* 0.000* 0.003*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DFXRA ARCH (1,1) GARCH (1,1)	NRTS 2 0.482 -0.196 0.526 0.462	0.151 0.015 0.175 0.093	A 3.190 -1.980 2.990	0.001* 0.000* 0.003* 0.000*
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ GARCH (1,1) \\ \hline \\ ARCH_DFXRA \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \end{array}$	NRTS 2 0.482 -0.196 0.526 0.462 tional Correlat -0.419 0.280 0.092	0.151 0.015 0.175 0.093 ion 0.125 0.125	3.190 -1.980 2.990 4.930 -4.540	0.001* 0.000* 0.003* 0.000*
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ GARCH (1,1) \\ ARCH_DFXRA \\ ARCH (1,1) \\ GARCH (1,1) \\ Dynamic Condit \\ \hline \\ rho \\ \lambda_1 \\ \end{array}$	NRTS 2 0.482 -0.196 0.526 0.462 tional Correlat -0.419 0.280 0.092	0.151 0.015 0.175 0.093 ion 0.125 0.125	3.190 -1.980 2.990 4.930 -4.540 2.230	0.001* 0.000* 0.003* 0.000* 0.000 0.025
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ GARCH (1,1) \\ \hline \\ ARCH_DFXRA \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \end{array}$	NRTS a 0.482 -0.196 0.526 0.462 tional Correlat -0.419 0.280 0.092 mey Market In Coefficient	0.151 0.015 0.015 0.175 0.093 ion 0.125 0.125 0.215 ndicators S.E.	3.190 -1.980 2.990 4.930 -4.540 2.230 0.430	0.001* 0.000* 0.003* 0.000* 0.000 0.025
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DFXRA \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ \\ Dynamic Condit \\ \hline \\ \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ \\ NRTS and More \\ \hline \end{array}$	NRTS a 0.482 -0.196 0.526 0.462 tional Correlat -0.419 0.280 0.092 mey Market In Coefficient	0.151 0.015 0.175 0.093 0.125 0.215 0.215	3.190 -1.980 2.990 4.930 -4.540 2.230 0.430	0.001* 0.000* 0.003* 0.000* 0.000 0.025 0.006
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ GARCH (1,1) \\ \hline \\ ARCH_DFXRA \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \textbf{NRTS and Mon} \\ \hline \\ ARCH_NRTS \\ \hline \end{array}$	NRTS a 0.482 -0.196 0.526 0.462 tional Correlat -0.419 0.280 0.092 hey Market In Coefficient NRTS	0.151 0.015 0.175 0.093 ion 0.125 0.125 0.215 ndicators S.E. and DRPR	3.190 -1.980 2.990 4.930 -4.540 2.230 0.430	0.001* 0.000* 0.003* 0.000* 0.000 0.025 0.006 P-value
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DFXRA \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ NRTS and Mon \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \end{array}$	NRTS a 0.482 -0.196 0.526 0.462 tional Correlat -0.419 0.280 0.092 hey Market In Coefficient NRTS 0.334	0.151 0.015 0.175 0.093 ion 0.125 0.125 0.215 ndicators S.E. and DRPR 0.044	3.190 -1.980 2.990 4.930 -4.540 2.230 0.430 Z-statistics 7.530	0.001* 0.000* 0.003* 0.000* 0.000 0.025 0.006 P-value 0.000*
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DFXRA \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \lambda_1 \\ \lambda_2 \\ \hline \\ \hline \\ NRTS and Mon \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \end{array}$	NRTS a 0.482 -0.196 0.526 0.462 tional Correlat -0.419 0.280 0.092 hey Market In Coefficient NRTS	0.151 0.015 0.175 0.093 ion 0.125 0.125 0.215 ndicators S.E. and DRPR	3.190 -1.980 2.990 4.930 -4.540 2.230 0.430	0.001* 0.000* 0.003* 0.000* 0.000 0.025 0.006 P-value
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ GARCH (1,1) \\ \hline \\ ARCH_DFXRA \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \lambda_1 \\ \lambda_2 \\ \hline \\ \hline \\ NRTS and Mon \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DRPR \\ \hline \end{array}$	NRTS 2 0.482 -0.196 0.526 0.462 ional Correlat -0.419 0.280 0.092 ney Market In Coefficient NRTS 0.334 -0.296	0.151 0.151 0.015 0.175 0.093 ion 0.125 0.215 ndicators S.E. and DRPR 0.044 0.042	A 3.190 -1.980 2.990 4.930 -4.540 2.230 0.430 Z-statistics 7.530 -6.950	0.001* 0.000* 0.000* 0.000* 0.000 0.025 0.006 P-value 0.000* 0.000*
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \lambda_1 \\ \lambda_2 \\ \hline \\ \hline \\ NRTS and Mor \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DRPR \\ \hline \\ ARCH (1,1) \\ \hline \end{array}$	NRTS 2 0.482 -0.196 0.526 0.462 cional Correlat -0.419 0.280 0.092 hey Market In Coefficient NRTS 0.334 -0.296 1.470	0.151 0.151 0.015 0.175 0.093 ion 0.125 0.125 ndicators S.E. and DRPR 0.044 0.042	A 3.190 -1.980 2.990 4.930 -4.540 2.230 0.430 Z-statistics 7.530 -6.950 3.320	0.001* 0.000* 0.000* 0.000* 0.000 0.025 0.006 P-value 0.000* 0.000*
$\begin{array}{c} \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ GARCH (1,1) \\ \hline \\ ARCH_DFXRA \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \lambda_1 \\ \lambda_2 \\ \hline \\ \hline \\ NRTS and Mon \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DRPR \\ \hline \end{array}$	NRTS 2 0.482 -0.196 0.526 0.462 ional Correlat -0.419 0.280 0.092 hey Market In Coefficient NRTS 0.334 -0.296 1.470 -0.007	0.151 0.151 0.015 0.175 0.093 ion 0.125 0.125 0.215 ndicators S.E. and DRPR 0.044 0.042 0.480 0.001	A 3.190 -1.980 2.990 4.930 -4.540 2.230 0.430 Z-statistics 7.530 -6.950	0.001* 0.000* 0.000* 0.000* 0.000 0.025 0.006 P-value 0.000* 0.000*

-				
λ_1	0.549	0.123	4.440	0.000
λ_2	0.001	0.013	0.070	0.001
	NRTS a	and DTB	R	
ARCH_NRTS				
ARCH (1,1)	0.383	0.160	3.820	0.004*
GARCH (1,1)	-0.278	0.077	-3.570	*000.0
ARCH_DTBR				
ARCH (1,1)	0.448	0.109	4.090	0.000*
GARCH (1,1)	-0.018	0.189	-0.100	0.023
Dynamic Condit			01100	01020
rho	0.097	0.120	0.810	0.042
λ_1	0.473	0.097	4.870	0.000
λ_1	0.013	0.097	0.080	0.000
N2		and DPL		0.005
AD CH NDTO	INKI 5 a	ina DPL.	ĸ	
ARCH_NRTS	0.044	0.050		0.000.0
ARCH (1,1)	0.244	0.058	5.730	0.000*
GARCH (1,1)	-0.877	0.042	-5.950	0.000*
ARCH_DPLR				
ARCH (1,1)	3.890	0.620	8.120	0.000*
GARCH (1,1)	-0.000	0.004	-0.030	0.000*
Dynamic Condit	tional Correlati	on		
rho	-0.031	0.139	-0.230	0.008
λ_l	0.473	0.396	1.190	0.023
λ_2	0.009	0.059	0.160	0.023
NRTS and Stoc			0.100	0.000
	Coefficient	S.E.	Z-statistics	P-value
		and FII	Z-statistics	r-value
ADCUL NIDTO	NKIS	and FII		
ARCH_NRTS	0.400	0.054	5.000	0.000.0
ARCH (1,1)	0.423	0.054	5.230	0.000*
GARCH (1,1)	-0.221	0.048	-4.950	0.000*
ARCH_FII	-			
ARCH (1,1)	0.625	0.132	4.720	0.000*
GARCH (1,1)	0.572	0.070	8.080	0.000*
Dynamic Condit	tional Correlati	on		
rho	0.611	0.091	6.650	0.000
λ.	0 493	0.147		
λ_1	0.493	0.147	3.350	0.001
λ_1 λ_2	0.158	0.323	3.350 0.490	
λ_2	0.158		3.350 0.490	0.001
λ ₂ ARCH_NRTS	0.158 NRTS a	0.323 and DTR	3.350 0.490 V	0.001 0.024
λ ₂ ARCH_NRTS ARCH (1,1)	0.158 NRTS a 0.342	0.323 nd DTR 0.099	3.350 0.490 V 3.190	0.001 0.024 0.000*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1)	0.158 NRTS a	0.323 and DTR	3.350 0.490 V	0.001 0.024
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DTRV	0.158 NRTS a 0.342 0.048	0.323 and DTR 0.099 0.032	3.350 0.490 V 3.190 0.030	0.001 0.024 0.000* 0.000*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DTRV ARCH (1,1)	0.158 NRTS a 0.342 0.048 0.513	0.323 nd DTR 0.099 0.032 0.071	3.350 0.490 V 3.190 0.030 6.480	0.001 0.024 0.000* 0.000* 0.000*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DTRV ARCH (1,1) GARCH (1,1)	0.158 NRTS a 0.342 0.048 0.513 0.433	0.323 nd DTR 0.099 0.032 0.071 0.029	3.350 0.490 V 3.190 0.030	0.001 0.024 0.000* 0.000*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DTRV ARCH (1,1)	0.158 NRTS a 0.342 0.048 0.513 0.433	0.323 nd DTR 0.099 0.032 0.071 0.029	3.350 0.490 V 3.190 0.030 6.480	0.001 0.024 0.000* 0.000* 0.000*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DTRV ARCH (1,1) GARCH (1,1) Dynamic Condit	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati	0.323 and DTR 0.099 0.032 0.071 0.029 on	3.350 0.490 V 3.190 0.030 6.480 8.220	0.001 0.024 0.000* 0.000* 0.000* 0.000*
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DTRV ARCH (1,1) GARCH (1,1) Dynamic Condit	0.158 NRTS a 0.342 0.048 0.513 0.433	0.323 and DTR 0.099 0.032 0.071 0.029 on	3.350 0.490 V 3.190 0.030 6.480	0.001 0.024 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \hline \\ \lambda_1 \\ \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.032	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670	0.001 0.024 0.000* 0.000* 0.000* 0.000* 0.000 0.000
λ ₂ ARCH_NRTS ARCH (1,1) GARCH (1,1) ARCH_DTRV ARCH (1,1) GARCH (1,1) Dynamic Condit rho	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800	0.001 0.024 0.000* 0.000* 0.000* 0.000* 0.000
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.032	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800	0.001 0.024 0.000* 0.000* 0.000* 0.000* 0.000 0.000
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P	0.001 0.024 0.000* 0.000* 0.000* 0.000* 0.000 0.000 0.000
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ \hline \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ \\ ARCH (1,1) \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.109	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230	0.001 0.024 0.000* 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ \hline \\ ARCH_(1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \hline \\ \\ GARCH (1,1) \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P	0.001 0.024 0.000* 0.000* 0.000* 0.000* 0.000 0.000 0.000
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ ARCH_DMCP \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.109 0.042	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ ARCH_DMCP \\ \hline \\ \\ ARCH_(1,1) \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.109 0.042 0.082	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 cional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443	0.323 0.099 0.032 0.071 0.029 00 0.032 0.073 0.223 nd DMC 0.109 0.042 0.082 0.043	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.109 0.042 0.043 on	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.443	0.323 0.099 0.032 0.071 0.029 00 0.032 0.073 0.223 0.073 0.223 0.042 0.042 0.043 0.024	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.831 0.054	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.109 0.042 0.043 on	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.443	0.323 0.099 0.032 0.071 0.029 00 0.032 0.073 0.223 0.073 0.223 0.042 0.042 0.043 0.024	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \hline \\ Dynamic Condit \\ \hline \\ \hline \\ ho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.831 0.054 0.594	0.323 0.099 0.032 0.071 0.029 0.032 0.073 0.223 nd DMC 0.109 0.042 0.043 0.043 0.024 0.024 0.023	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 * 0.000* 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ ho \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH (1,1) \\ \hline \\ ARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.831 0.054 0.594	0.323 0.099 0.032 0.071 0.029 0.032 0.073 0.223 nd DMC 0.109 0.042 0.043 0.043 0.024 0.024 0.023	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 * 0.000* 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DTRV \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ ho \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH (1,1) \\ \hline \\ ARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 ional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 ional Correlati 0.831 0.054 0.594 modity Mark Coefficient	0.323 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.042 0.043 on 0.082 0.043 on 0.024 0.024 0.024 0.0313 et Indica	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 tors Z-statistics	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ \hline ARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline Dynamic Condit \\ \hline rho \\ \hline \lambda_1 \\ \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ \hline ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ NRTS and Con \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 ional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 ional Correlati 0.831 0.054 0.594 modity Mark Coefficient	0.323 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.042 0.042 0.043 on 0.024 0.082 0.043 on 0.024 0.024 0.0313 et Indica S.E.	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 tors Z-statistics	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ \hline ARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline Dynamic Condit \\ \hline rho \\ \hline \lambda_1 \\ \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ \hline ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ NRTS and Con \\ \hline \\ ARCH_NRTS \\ \hline \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 ional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 ional Correlati 0.831 0.054 0.594 modity Mark Coefficient NRTS a	0.323 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.109 0.042 0.042 0.043 on 0.024 0.082 0.043 on 0.024 0.024 0.0313 et Indica	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 tors Z-statistics O	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ \hline ARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline Dynamic Condit \\ \hline rho \\ \hline \lambda_1 \\ \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ \hline ARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline Dynamic Condit \\ \hline rho \\ \hline \lambda_1 \\ \hline \lambda_2 \\ \hline \\ NRTS and Con \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 ional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 ional Correlati 0.831 0.054 0.594 modity Mark Coefficient NRTS a 0.346	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.109 0.042 0.042 0.043 on 0.024 0.083 0.313 et Indica S.E. nd DCR	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 tors Z-statistics O	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000 0.051 0.058 P-value
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ \hline ARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline Dynamic Condit \\ \hline rho \\ \hline \lambda_1 \\ \hline \lambda_2 \\ \hline \\ ARCH_NRTS \\ \hline ARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline GARCH (1,1) \\ \hline Dynamic Condit \\ \hline rho \\ \hline \lambda_1 \\ \hline \lambda_2 \\ \hline \\ NRTS and Con \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ CARCH_NRTS \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \hline \\ \\ CARCH_(1,1) \\ \hline \\ \hline \\ CARCH_(1,1) \\ \hline \\ \hline \\ CARCH_(1,1) \\ \hline \\ \hline \\ CARCH (1,1) \\ \hline \\ \hline \\ CARCH_(1,1) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ CARCH_(1,1) \\ \hline \\ $	0.158 NRTS a 0.342 0.048 0.513 0.433 ional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 ional Correlati 0.831 0.054 0.594 modity Mark Coefficient NRTS a	0.323 0.099 0.032 0.071 0.029 on 0.032 0.073 0.223 nd DMC 0.109 0.042 0.042 0.043 on 0.024 0.082 0.043 on 0.024 0.024 0.0313 et Indica	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 tors Z-statistics O	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \\ \lambda_1 \\ \hline \\ \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \\ \lambda_2 \\ \hline \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \\ \lambda_2 \\ \hline \\ \hline \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ CARCH (1,1) $	0.158 NRTS a 0.342 0.048 0.513 0.433 ional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 ional Correlati 0.343 0.443 ional Correlati 0.354 0.594 modity Mark Coefficient NRTS a 0.346 -0.249	0.323 nd DTR 0.099 0.032 0.071 0.029 on 0.023 0.073 0.223 nd DMC 0.109 0.042 0.042 0.082 0.043 on 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.025 nd DMC	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 tors Z-statistics O 2.910 -4.270	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000 0.051 0.058 P-value 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ NRTS and Con \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DCRO \\ \hline \\ ARCH_DCRO \\ \hline \\ ARCH_(1,1) \\ \hline \\ ARCH_(1,1) \\ \hline \\ ARCH_(1,1) \\ \hline \\ \hline \\ \hline \\ ARCH_(1,1) \\ \hline \\ $	0.158 NRTS a 0.342 0.048 0.513 0.433 0.433 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 0.054 0.594 modity Mark Coefficient NRTS a 0.346 -0.249 0.488	0.323 0.099 0.032 0.071 0.029 0.032 0.073 0.223 0.073 0.223 0.073 0.223 0.074 0.024 0.042 0.043 0.0135 0.092 0.058	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 Z-statistics O 2.910 -4.270 3.610	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.051 0.058 P-value 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.831 0.054 0.594 modity Mark Coefficient NRTS a 0.346 -0.249 0.488 0.244	0.323 0.099 0.032 0.071 0.029 0.032 0.073 0.223 nd DMC 0.032 0.073 0.223 0.073 0.223 0.042 0.042 0.042 0.042 0.042 0.043 0.024 0.024 0.083 0.313 et Indica S.E. nd DCR 0.092 0.058 0.220	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 tors Z-statistics O 2.910 -4.270	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000 0.051 0.058 P-value 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_1 \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ NRTS and Con \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ ARCH_DCRO \\ \hline \\ ARCH_DCRO \\ \hline \\ ARCH_(1,1) \\ \hline \\ ARCH_(1,1) \\ \hline \\ ARCH_(1,1) \\ \hline \\ \hline \\ \hline \\ ARCH_(1,1) \\ \hline \\ $	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.831 0.054 0.594 modity Mark Coefficient NRTS a 0.346 -0.249 0.488 0.244 tional Correlati	0.323 0.099 0.032 0.071 0.029 0.032 0.073 0.223 0.073 0.223 0.073 0.223 0.042 0.042 0.042 0.042 0.042 0.043 0.0135 0.220 0.058 0.135 0.220 0.021 0.022 0.022 0.0135 0.220 0.022 0.025	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 Z-statistics O 2.910 -4.270 3.610	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000 0.051 0.058 P-value 0.000* 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.831 0.054 0.594 modity Mark Coefficient NRTS a 0.346 -0.249 0.488 0.244	0.323 0.099 0.032 0.071 0.029 0.032 0.073 0.223 nd DMC 0.032 0.073 0.223 0.073 0.223 0.042 0.042 0.042 0.042 0.042 0.043 0.024 0.024 0.083 0.313 et Indica S.E. nd DCR 0.092 0.058 0.220	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 Z-statistics O 2.910 -4.270 3.610	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.051 0.058 P-value 0.000* 0.000*
$\begin{array}{c} \hline \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ ARCH_NRTS \\ \hline \\ ARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ GARCH (1,1) \\ \hline \\ \\ Dynamic Condit \\ \hline \\ rho \\ \hline \\ \lambda_2 \\ \hline \\ \hline \\ \\ RCH_NRTS \\ \hline \\ ARCH_(1,1) \\ \hline \\ \\ GARCH (1,1) \\ \hline \\ \\ Oynamic Condit \\ \hline \\ \end{array}$	0.158 NRTS a 0.342 0.048 0.513 0.433 tional Correlati 0.141 0.051 0.574 NRTS a 0.352 0.059 0.613 0.443 tional Correlati 0.831 0.054 0.594 modity Mark Coefficient NRTS a 0.346 -0.249 0.488 0.244 tional Correlati	0.323 0.099 0.032 0.071 0.029 0.032 0.073 0.223 0.073 0.223 0.073 0.223 0.042 0.042 0.042 0.042 0.042 0.043 0.0135 0.220 0.058 0.135 0.220 0.021 0.022 0.022 0.0135 0.220 0.022 0.025	3.350 0.490 V 3.190 0.030 6.480 8.220 2.962 0.670 1.800 P 3.230 0.050 7.480 10.200 33.630 0.650 1.900 tors Z-statistics O 3.610 1.110	0.001 0.024 0.000* 0.000* 0.000* 0.000 0.000 0.000 0.000 0.000 0.000* 0.000* 0.000* 0.000* 0.000* 0.000 0.051 0.058 P-value 0.000* 0.000* 0.000*

λ_2	0.234	0.211	1.110	0.007					
2	NRTS :	and DGL							
ARCH_NRTS									
ARCH (1,1)	0.438	0.101	3.820	0.000*					
GARCH (1,1)	-0.290	0.032	-4.910	0.000*					
ARCH_DGLD									
ARCH (1,1)	0.400	0.102	3.900	0.000*					
GARCH (1,1)	0.619	0.081	7.580	0.000*					
Dynamic Condit	ional Correlat	ion							
rho	0.112	0.110	1.020	0.030					
λ_1	0.349	0.116	3.000	0.003					
λ_2	0.066	0.406	0.160	0.008					
	NRTS a	nd DDSL	LV						
ARCH_NRTS									
ARCH (1,1)	0.400	0.103	3.860	0.000*					
GARCH (1,1)	-0.215	0.042	-5.130	0.000*					
ARCH_DDSLV									
ARCH (1,1)	0.404	0.143	2.820	0.005*					
GARCH (1,1)	0.543	0.086	6.300	0.000*					
Dynamic Condit	ional Correlat	ion							
rho	0.116	0.098	1.190	0.023					
λ_1	0.125	0.107	1.160	0.025					
λ_2	0.429	0.608	0.710	0.042					
Notes: [*] denote	es rejection of	null hypo	thesis at 99%						
confidence level									

Predictions

Results for estimations (within the sample - from April 1999 to March 2011) and the predictions (out of the sample - from April 2011 to March 2015) of variations in NRTS due to selected macroeconomic indicators (group wise) based on DCC MGARCH models are presented through figure 1 to 5. These figures show estimations and predictions of NRTS based on past behaviour of itself, and the variations in selected independent variables (group wise).

Figure 1: Predictions for NRTS due to Real Economy Indicators

Figure 2: Predictions for NRTS due to Forex Market Indicators

Figure 3: Predictions for NRTS due to Money Market Indicators

Figure 4: Predictions for NRTS due to Stock Market Indicators

Figure 5: Predictions for NRTS due to Commodity Market Indicators

Figure 1 shows that predicted values of NRTS are much closer to the values of DWPI and DIIP. The behaviour of NRTS is significantly different from DGDP. Thus, it can be concluded that the DWPI and DIIP are much better predictors of NRTS than the DGDP. Figure 2 shows that among Forex market indicators, DFXRA is only better predictor of NRTS. It is much closer to NRTS as compared to DFXRE and DBOP. Figure 3 indicates that none of the money market indicators is favorable for predicting stock returns at NSE. Among stock market indicators (figure 4) FII and DTRV are much closer to NRTS, hence better predictors of NRTS. Predictions and estimations for NRTS due to commodity market indicators presented through figure 5 indicate that the behaviour of DGLD and DDSLV is different from the real behavior of NRTS. However, DCRO proves favorable for predicting the behavior of NRTS, as movements in

DCRO are much closer to the movements in NRTS.

CONCLUSION

This paper is an attempt to trace the impact of macroeconomic determinants on the stock market volatility by using econometrics techniques. In the process, variables as described in the stock market function are first tested for unit root and stationary and then causal links among macroeconomic determinants and stock market are explored by applying Granger causality in both the bi-variate multivariate VAR framework. and The Multivariate GARCH models developed for predicting NRTS affected due to variations in various sets of macroeconomic variables indicate that though these models are capable of measuring the impact of changes in one/ set of series on the other series of same amplitude. It is important to mention here that the econometrics techniques used to predict the behaviour of stock market due to selected macroeconomic indicators are suitable in short period only, because predicted values of all the variables became constant after six months.

BIBLIOGRAPHICAL NOTES

The basic econometric concepts, like, unit root testing, vector auto regression etc. are learned from the books on Econometrics by Gujarati (2011, 2004), Bisgaard and Kulahci (2011), Mills and Markellos (2010). Dougherty (2007) and Madalla (2001). The econometric techniques used for modeling the stock market volatility are taken from the books on Stock Market Volatility by Gregoriou (2009) and Hol (2003). The concept of Multivariate GARCH, types of MGARCH, e.g. diagonal VECH MGARCH, constant conditional correlation MGARCH. dynamic conditional correlation MGARCH, and varying conditional correlation MGARCH are taken from the literature of Engle (1982), Bollerslev, Engle, and Wooldridge (1988), Bollerslev (1990), Engle (2002), and Tse and Tsui (2002). A classical reference on the GARCH Models is the book by Francq and Zakoian (2010). The analysis work is carried out using STATA SE 12.0 software - Release 12.

REFERENCES

- Adam, A. M, & Tweneboah, G. (2008). Do macroeconomic variables play any role in the stock market movement in Ghana? MPRA Paper 9357, University Library of Munich, Germany, revised 2008 Online at http://mpra.ub.uni-muenchen.de/9357/.
- Ali, I., Rehman, K. U., Yilmaz, A. K., Khan, M. A., & Afzal, H. (2010). Causal relationship between macro-economic indicators and stock exchange prices in Pakistan. African Journal of Business Management. 4(3), 312-319.

- Asaolu, T. O., & Ogunmuyiwa, M. S. (2011). An econometric analysis of the impact of macroeconomic variables on stock market movement in Nigeria. Asian Journal of Business Management. 3(1), 72-78.
- Bisgaard, S., & Kulahci, M. (2011). Time series analysis and forecasting by example. New Jersey, NJ: John Wiley and Sons, Inc.
- Bollerslev T. (1990). Modeling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Review of Economics and Statistics **72**: 498–505.
- Bollerslev, T., Engle, R. F., & Wooldridge, J. (1988). A capital asset pricing model with time-varying covariances. Journal of Political Economy. 96, 116–131.
- Corradi, V. & Distaso, W. (2009). Macroeconomic determinants of stock market volatility and volatility risk-premia, working paper, London School of Economics, London.
- Diebold, F. X., & Yilmaz, K. (2008). Macroeconomic Volatility and Stock Market Volatility, Worldwide. Working Paper 14269, National Bureau of Economic Research, Cambridge, MA.
- Dougherty, C. (2007). Introduction to econometrics (3rded.). New York, NY: Oxford University Press.
- Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica. 50, 987-1008.
- Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics. 20, 339– 350.
- Francq, C., & Zakoian, J. M. (2010). GARCH models: Structure, statistical inference and financial applications. England, UK: John Wiley and Sons Ltd.
- Granger, C. W. J. (1969). Investigating causal relations by econometric models and crossspectral methods. Econometrica. 63, 265-79.
- Gregoriou, G. N. (2009), Stock market volatility. London, UK: CRC Press.
- Gujarati, N. D. (2004).Basic econometrics (4thed.). New Delhi, India: Tata McGraw Hill Publishing Company Ltd.
- Hol, E. M.J. H., (2003), Empirical studies on volatility in international stock markets. Boston, UK: Kluwer Academic Publishers.

- Humpe, A. & Macmillan, P. (2007). Can macroeconomic variables explain long term stock market movements? A comparison of the US and Japan, CDMA Working Paper No. 07/20.
- Kumar, B., & Singh, P. (2009). The dynamic relationship between stock returns, trading volume and volatility: Evidence from Indian stock market. Retrieved from xa.yimg.com/kq/groups/22485914/ name/res_paper_final226.pdf.
- Kumar, N. P., & Puja, P. (2012). The impact of Macroeconomic Fundamentals on Stock Prices revisited: An Evidence from Indian Data, MPRA Working Paper No. 38980. University Library of Munich, Germany.
- Flad, M. (2006). Do macroeconomic factors help forecasting stock market volatility? Doi=10.1.1.122.1408, Retrieved from www.econ.ku.dk/Events_News/Zeuthen/200 6/06/Flad_ 2006.
- Maddala, G. S. (2001), Introduction to econometrics (3rded.). England, UK: John Wiley and Sons.
- Maysami, R.C., Howe, L.C. & Hamaz, M.A. (2004). Relationship between macroeconomic variables and stock market indices: cointegration evidence from stock exchange of Singapore's all-s sector indices, Journal Penguruson, 24, 47-77.
- Mills, T. C., & Markellos, R. N. (2010). The econometric modelling of financial time series (3rded.). Cambridge, USA: Cambridge University Press.
- Bhattacharya, B., & Mukherjee, J. (2001). Causal relationship between stock market and exchange rate, foreign exchange reserves and value of trade balance. Akron Business and Economic review. 12, 7-12.
- Bhattacharyya, B. & Mukherjee, J. (2006). Indian stock price movement and the macroeconomic context – a time series analysis, Journal of International Business and Economics. 5 (1), 167-181.
- Sharma, G. D., & Mahendru, M. (2010). Impact of macro-economic variables on stock prices in India. Global Journal of Management and Business Research, 10(7), 19-26.
- Tse, Y. K., & Tsui, A. K. C. (2002). A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business and Economic Statistics. 20, 351–362.