ECONOMETRIC MODELING OF MACROECONOMIC DETERMINANTS OF STOCK MARKET VOLATILITY IN INDIA WITH SPECIAL REFERENCE TO NSEIL

Swami Prasad Saxena

Dayalbagh Educational Institute
Dayalbagh, Agra, Uttar Pradesh
e-mail: spsaxena@dei.ac.in

Sonam Bhadauriya

Himalayan School of Management
Swami Rama Himalayan University
Dehradun, Uttarakhand
e-mail: sbhadauriya@live.in

Abstract

Modeling and forecasting volatility of a financial time series has become a very prominent area for research last few years. These models provide precise estimate of conditional variance process and make a good forecast of future volatility that may help the stakeholders in obtaining efficient portfolio and accurate derivative prices of financial instruments. This paper aims at developing an econometric model for predicting stock market variability affected due to variations in the macroeconomic indicators. This paper considered twelve years' monthly data of Returns of Monthly Averages of S\&P CNX Nifty (NRTS) as dependent variable and fifteen independent macroeconomic variables selected from different segments of economy. In the process, variables as described in the econometric function for stock market returns at NSE are first tested for unit root and stationary and then causal links among dependent and independent variables are explored by using Granger causality in bi-variate and multivariate VAR framework. The Multivariate GARCH models developed for predicting NRTS affected due to variations in various sets of macroeconomic variables indicate that though these models are capable of measuring the impact of changes in onel set of series on the other series of same amplitude, but, are suitable in short period only.

Keywords: Stock market volatility, Macroeconomic determinants, Econometric modeling, VAR frameworks, DCC MGARCH model

INTRODUCTION

Volatility is a symptom and an integral part of a highly liquid stock market alternating bull and bear phases. Investors interpret a rise in stock market volatility as an increase in the risk of equity investment and consequently they shift their funds to less risky assets. The issues of volatility and risk have become more important in recent times for financial practitioners, market participants, regulators, policy makers and researchers. The volatility of stock market indicators goes beyond anyone's reasonable explanations. Industry performances, economic and political changes are among the major factors that can
affect the stock market behavior. Stock market volatility, in general, is affected by both micro and macro variables. Micro variables include corporate results announcements, business life cycles, business risk, financial Leverage etc., and macro variables, the indicators of country's economy, primarily include gross domestic product, inflation rate, interest rate, exchange rate, petroleum and gold prices, forex reserves, stock trading volume, foreign institutional investment etc. Economists view that though stock performance of a particular company is influenced by micro variables, the macro variables drop impact on the whole stock market behavior.

The relationship between macroeconomic variables and stock market returns by now, is well documented in literature. A significant research has been done to investigate the relationship between stock market returns and a range of macroeconomic variables across a number of stock markets in different time horizons. Bhattacharya and Mukherjee (2001, 2006) investigated causal relationship between stock indices (BSE Sensex) and selected macroeconomic variables, viz., money supply, index of industrial production, national income, inflation rate, real effective exchange rate, foreign exchange reserves and trade balance. They found no evidence of causal linkages between stock returns and the macroeconomic variables under consideration. Kumar (2009) in a study conducted on return at NSE observed a causal linkage between FII and stock returns. He however mentioned that there exists no long-run equilibrium relationship between stock returns. Corradi, Distaso and Mele (2009) and Ali et al. (2010) also rejected the hypotheses of causal relation between selected macroeconomic indicators and stock returns at KSE, Pakistan. Kumar and Puja (2012) discovered that macroeconomic variables and the stock market indices are cointegrated and, hence, there exists long-run equilibrium relationship between them.

Sharma and Mahendru (2010) developed regression model to analyze long term relationship between selected macroeconomic variables and stock prices at BSE, India. They observed highly significant impact of exchange rates and gold prices and very limited impact of forex reserves and inflation on stock prices. Maysami, Howe and Hamzah (2004) in a study indicated that Singapore stock market form cointegrating relationship with changes in the short and long-term interest rates, industrial production, price levels, exchange rates, and money supply. Adam and Tweneboah (2008) also, in similar way observed long run cointegrating relationship between selected macroeconomic variable and Stock return in Ghana. Flad (2006) and Humpe and Macmillan (2007) also observed that macroeconomic factors help to forecast
volatility of stock returns. Diebold and Yilmaz (2008) in a study conducted cross section analysis of stock market returns in forty four countries observed clear link between macroeconomic fundamentals and stock market volatilities. Asaolu and Ogunmuyiwa (2011) also investigated impact of macroeconomic variables on Average stock prices and observed weak relationship between average share prices and macroeconomic variables in Nigeria. To encapsulate, a number of studies found evidences of causal relationship between macroeconomic variables and stock market performance, while some rejected the hypotheses of relationship between these variables. Thus, the findings of studies are not substantial in drawing exact relationship between diverse macroeconomic variables and stock prices. This entails identification of a set of macroeconomic variables that can be used for modeling stock market volatility.
To discover and analyze causal relations and dynamic interactions between macroeconomic variables and stock market performance and to forecast stock market indices, many researchers in the past used regression methods and ARIMA models. But, they failed to produce accurate forecast because of nonlinearity in data series and inherent limitations of modeling techniques. This paper is an attempt to develop an econometric model for predicting stock market variability affected due to variations in the macroeconomic indicators. It considered twelve years' monthly data spanning from 1999-00 to 201011 on daily return of S\&P CNX Nifty as dependent variable and fifteen independent macroeconomic variables grouped into five major categories, viz. real economy indicators, forex market indicators, money market indicators, stock market indicators and commodity market indicators (table 1). The paper is divided into five sections. Section one is concerned with theoretical foundations and review of literature, section two is about econometric methodologies and model specifications. It discusses issues related with confirmation of the stationarity of time series data through ADF unit root test, lag order selection, checking of the interdependence of macroeconomic determinants and the stock market volatility via Granger Causality test after declaring the variables in bi-variate and multivariate Vector Auto Regression (VAR) frameworks, GARCH modeling and estimation through DCC MGARCH model. Section three portrays analysis and findings, section four is concerned with estimation of stock market behavior via DCC MGARCH model, and section five concludes the paper. The analysis of data is done by using STATA (SE 12.0).

Table 1: The Data

Dependent Variable			Data Source
	NRTS	Log. Returns of Monthly Averages of S\&P CNX NIFTY (Base: November 3, $1995=1000$)	dbie.rbi.org.in
(A) Real Economy Indicators			
00000000000	GDP	GDP at Factor Cost: Current Prices- Rs. Crore (Base: 2004-05)	dbie.rbi.org.in
	IIP	Monthly Index of Industrial Production (Base: 1993-94=100)	dbie.rbi.org.in
	WPI	Wholesale Price Index: Monthly Avg. (Base: 2004-05=100)	dbie.rbi.org.in
	(B) Forex Market Indicators		
	BOP	India's Overall Balance of Payments: Quarterly (Rs. Crore)	dbie.rbi.org.in
	FXRE	Monthly Foreign Exchange Reserves (Rs. Crore)	dbie.rbi.org.in
	FXRA	Monthly Average of Exch. Rate of INR (Rs. per unit of USD)	dbie.rbi.org.in
	(C) Money Market Indicators		
	RPR	Repo Rate	dbie.rbi.org.in
	TBR	Monthly Avg. of Implicit Yield at Cut-off Price: 91 Day T Bills	dbie.rbi.org.in
	PLR	Prime Lending Rate (SBAR: State Bank Advance Rate)	in.reuters.com
	(D) Stock Market Indicators		
	FII	Monthly Net Investment by FIIs in the India (Rs. Crore)	dbie.rbi.org.in
	TRV	Monthly Traded Volume in Corp. Debt at NSE (Rs. Crore)	dbie.rbi.org.in
	MCP	Monthly Market Capitalization-NSE (Rs. Crore)	dbie.rbi.org.in
	(E) Commodity Market Indicators		
	CRO	Monthly Cushing, OK WTI Spot Price FOB (USD per Barrel)	eia.gov
	GLD	Monthly Avg. of Gold Prices: Mumbai (Rs. per 10 Gm .)	dbie.rbi.org.in
	SLV	Monthly Avg. of Silver Prices: Mumbai (Rs. per Kg.)	dbie.rbi.org.in

Econometric Modeling Methodology

The econometricians have mentioned three phases of econometric models. These are specification, estimation and prediction. Model specification hypothesizes that the dependent variable Y is linearly related to the explanatory variable X (Gujarati, 2004). Based on variables considered in present study (table 1), the econometric function for stock market returns at NSE can be specified as:

$+\beta_{10} \mathrm{FII}_{\mathrm{t}}+\beta_{11} \mathrm{TRV}_{\mathrm{t}}+\beta_{12} \mathrm{MCP}_{\mathrm{t}}+\beta_{13} \mathrm{CRO}_{\mathrm{t}}+\beta_{14} \mathrm{GLD}_{\mathrm{t}}+\beta_{15} \mathrm{SLV}_{\mathrm{t}}+\varepsilon_{\mathrm{t}}$
Econometric methodology states that before using time series data for further investigation it must be tested for unit root and stationary. To confirm the stationarity of data series by identifying the appropriate level of differencing and declaring the order of integration, ADF unit root test is employed. The basic equation of ADF unit root test is:

$$
\Delta \mathrm{X}_{\mathrm{t}}=\beta_{1}+\beta_{2} \mathrm{t}+\beta_{3} \mathrm{X}_{\mathrm{t}-1}+\sum_{\mathrm{i}=1}^{\mathrm{p}} \alpha_{1} \Delta \mathrm{X}_{\mathrm{t}-\mathrm{i}}+\varepsilon_{\mathrm{t}}
$$

Here, ε_{t} is pure white noise error term, p is maximum length of the lagged dependent variable, and α_{i} is the parameter of lagged first. The test results (table 2) indicate that NRTS and FII are stationary at $\mathrm{I}(0)$, SLV is stationary at $\mathrm{I}(2)$ and all other variables are stationary at $\mathrm{I}(1)$.
For fitting a VAR of the correct order four lag order selection criterions are common. Among these Final Prediction Error (FPE) is not an
information criterion. However, it is included as an information criterion to minimize the prediction error. The Akaike Information Criterion (AIC) measures the discrepancy between the given model and the true model, which, in principle should be minimum.

Table 2: ADF Unit Root Test Results

S. No.	Variables	Lag Order	Order of Integration	T- Statistics	P- Value
1.	NRTS	3	$\mathrm{I}(0)$	-5.537	0.000^{*}
2.	GDP	1	$\mathrm{I}(0)$	1.753	0.99^{2}
	DGDP	3	$\mathrm{I}(1)$	-5.513	0.000^{*}
3.	IIP	4	$\mathrm{I}(0)$	0.879	0.99^{2}
	DIIP	3	$\mathrm{I}(1)$	-5.533	0.000^{*}
4.	WPI	4	$\mathrm{I}(0)$	1.889	0.99^{2}
	DWPI	4	$\mathrm{I}(1)$	-5.332	0.000^{*}
5.	BOP	4	$\mathrm{I}(0)$	-3.026	0.032
	DBOP	3	$\mathrm{I}(1)$	-7.283	0.000^{*}
6.	FXRE	4	$\mathrm{I}(0)$	-0.024	0.956
	DFXRE	3	$\mathrm{I}(1)$	-4.871	0.000^{*}
7.	FXRA	2	$\mathrm{I}(0)$	-2.183	0.212
	DFXRA	1	$\mathrm{I}(1)$	-7.669	0.000^{*}
8.	RPR	3	$\mathrm{I}(0)$	-2.123	0.235
	DRPR	2	$\mathrm{I}(1)$	-7.873	0.000^{*}
9.	TBR	1	$\mathrm{I}(0)$	-1.980	0.295
	DTBR	1	$\mathrm{I}(1)$	-7.774	0.000^{*}
10.	PLR	3	$\mathrm{I}(0)$	-1.440	0.562
	DPLR	2	$\mathrm{I}(1)$	-6.354	0.000^{*}
11.	FII	1	$\mathrm{I}(0)$	-5.859	0.000^{*}
12.	TRV	2	$\mathrm{I}(0)$	-1.237	0.657
	DTRV	1	$\mathrm{I}(1)$	-12.120	0.000^{*}
13.	MCP	1	$\mathrm{I}(0)$	0.090	0.965
	DMCP	0	$\mathrm{I}(1)$	-11.445	0.000^{*}
14.	CRO	3	$\mathrm{I}(0)$	-1.677	0.443
	DCRO	2	$\mathrm{I}(1)$	-5.172	0.000^{*}
15.	GLD	1	$\mathrm{I}(0)$	2.560	0.999
	DGLD	0	$\mathrm{I}(1)$	-11.433	0.000^{*}

16.	SLV	4	$\mathrm{I}(0)$	2.669	0.999
	DSLV	4	$\mathrm{I}(1)$	-2.596	0.093
	DDSLV	3	$\mathrm{I}(2)$	-8.484	0.000^{*}

Notes:

(i) Variable labels without any prefix are stationary at their own level, $\mathrm{I}(0)$; labels prefixed with D are stationary after differencing once, $\mathrm{I}(1)$; and the variables prefixed with DD are stationary after differencing twice, $I(2)$.
(ii) * denotes rejection of null hypothesis at 99% confidence level.
(iii) The respective critical value is -3.497 .
(vi) Akaike Information Criterion is used for lag order selection.

The Hannan-Quinn Information Criterion (HQIC) and Schwarz's Bayesian Information Criterion (SBIC) are also interpreted similar to the AIC. The model form of log likelihood (LL) for VAR is:

$$
\mathrm{LL}=\left(\frac{\mathrm{T}}{2}\right)\left\{\ln \left(\left|\widehat{\Sigma}^{-1}\right|\right)-\mathrm{K} \ln (2 \pi)-\mathrm{K}\right\}
$$

Here, T is number of observations, K is number of equations, and $\widehat{\Sigma}$ is the maximum likelihood estimate denoted as $\mathrm{E}\left[\mathrm{u}_{\mathrm{t}} \mathrm{u}_{\mathrm{t}}\right]$. In this, u_{t} is the $K \times 1$ vector of disturbances. The results of VAR lag order selection based on all the four criterions (table 3) show maximum value of log likelihood for four lags, thus it selects the model with four lags. The minimum value based information viz., FPE and AIC also confirm the lag order of four for the VAR estimation. But SBIC and HQIC chose a model with two lags. This paper considered lag order of four for further estimation as it is also supported by the likelihood ratio test.

Table 3: VAR Lag Order Selection Criteria

Lag	LL	LR	DF	Sig.	FPE	AIC	SBIC	HQIC
0	-14270.3				0.000	204.091	204.227	204.427
1	-12215.7	4109.2	256	0.000	0.000	178.396	180.719^{*}	184.112^{*}
2	-11881.1	669.19	256	0.000	0.000	177.274	181.782	188.368
3	-11493.8	774.61	256	0.000	0.000	175.398	182.092	191.871
4	-11168.1	651.44^{*}	256	0.000	0.000^{*}	174.402^{*}	183.282	196.254

Notes: * indicates lag order selected by the criterion.

The causal relationship between stock market volatility and selected macroeconomic determinants, and also the relationship among selected macroeconomic determinants is traced using Granger causality test proposed by Granger (1969) in the Vector Auto Regression (VAR) framework.
Granger Causality test assumes that variables under consideration are stationary. If the time series has unit root or unit roots in it, then it should be differenced once or twice or more for following the stationary process. The mathematical form of Granger Causality test in a bi-variate autoregressive framework is as follows.

$$
\begin{aligned}
& X(t)=\sum_{j=1}^{p} A_{11, \mathrm{j}} X(t-j)+\sum_{j=1}^{p} A_{12, j} Y(t-j)+\varepsilon_{1}(t) \\
& Y(t)=\sum_{j=1}^{p} A_{21, j} X(t-j)+\sum_{j=1}^{p} A_{22, j} Y(t-j)+\varepsilon_{2}(t)
\end{aligned}
$$

Here, X and Y are the variables, p is the maximum length of the lagged observations, A is the matrix that contains coefficients of the model, and ε_{1} and ε_{2} are the prediction errors.
Vector Auto-regression (VAR) models, used for forecasting and also for analyzing causal relationship among economic time series variables, are multiequation systems in which all the variables are treated as endogenous variable. The use of VARs for causal inferences is known as structural modeling. Mathematically, in a VAR model, each of the
endogenous variables is explained by its lagged or past values and the lagged values of other endogenous variables in the model. A bi-variate VAR model for X and Y variables can be formulated as:
$X_{t}=A_{0}+A_{1} X_{t-1}+A_{2} X_{t-2} \ldots A_{p} X_{t-p}+A_{1} Y_{t-1}+A_{2} Y_{t-2} \ldots A_{p} Y_{t-p}+u_{t}$
$Y_{t}=A_{0}+A_{1} X_{t-1}+A_{2} X_{t-2} \ldots A_{p} X_{t-p}+A_{1} Y_{t-1}+A_{2} Y_{t-2} \ldots A_{p} Y_{t-p}+u_{t}$
Here, A_{o} is a vector of constant terms, A_{p} is the matrices of constants to be estimated, u_{t} is a vector of residuals and assumed to be white noise and p is the lag length. With the same notations, a multivariate VAR model for the variables X, Y and Z can be framed as:

$$
\begin{aligned}
& X_{t}=A_{0}+A_{1} X_{t-1}+A_{2} X_{t \cdot 2} \ldots A_{p} X_{t \cdot p}+A_{1} Y_{t \cdot 1}+A_{2} Y_{t \cdot 2} \ldots A_{p} Y_{t \cdot p}+A_{1} Z_{t \cdot 1}+A_{2} Z_{t 2} \ldots A_{p} Z_{t \cdot p}+u_{t} \\
& Y_{t}=A_{0}+A_{1} X_{t \cdot 1}+A_{2} X_{t \cdot 2} \ldots A_{p} X_{t \cdot p}+A_{1} Y_{t \cdot 1}+A_{2} Y_{t \cdot 2} \ldots A_{p} Y_{t p}+A_{1} Z_{t \cdot 1}+A_{2} Z_{t 2} \cdots A_{p} Z_{t: p}+u_{t} \\
& Z_{t}=A_{0}+A_{1} X_{t-1}+A_{2} X_{t \cdot 2} \ldots A_{p} X_{t \cdot p}+A_{1} Y_{t-1}+A_{2} Y_{t \cdot 2} \ldots A_{p} Y_{t \cdot p}+A_{1} Z_{4.1}+A_{2} Z_{4.2} \ldots A_{p} Z_{t-p}+u_{1}
\end{aligned}
$$

In a VAR model no contemporaneous variables as explanatory are included on the right-hand side, thus all the equations have same form since they share the same right-hand side. In a VAR equation all the included variables are treated as endogenous and depend on all the others.
The VAR models can be used for forecasting, but not for structural analysis and policy evaluation. Thus, an analytical research requires further test such as Granger Causality and models such as Multi-variate GARCH for identifying the proper sensitivity among the variables.

To delve deeper into the association of macroeconomic environment of the country and stock market performance, the study used Generalized ARCH (GARCH) models. These models are considered efficient for modeling the volatility of financial assets (Francq and Zakoian, 2010). The newly developed Multivariate GARCH (MGARCH) models allow the conditional covariance matrix of the dependent variables to follow a flexible dynamic structure. They also allow the conditional mean to follow a VAR structure. MGARCH implements four commonly used parameterizations viz., the Diagonal Vech (DVECH) model, the Constant Conditional Correlation (CCC) model, the Dynamic Conditional Correlation (DCC) model, and the Varying Conditional Correlation (VCC) model. The general form of MGARCH model is written as:

$$
\mathrm{y}_{\mathrm{t}}=\mathrm{Cx}_{\mathrm{t}}+\epsilon_{\mathrm{t}}, \text { and } \epsilon_{\mathrm{t}}=\mathrm{H}_{\mathrm{t}}^{1 / 2} \mathrm{v}_{\mathrm{t}}
$$

Here, y_{t} is an $\mathrm{m} \times 1$ vector of dependent variables, C is an $\mathrm{m} \times \mathrm{k}$ matrix of parameters, x_{t} is a $\mathrm{k} \times 1$ vector of independent variables which may contain lags of $y_{t} \cdot H_{t}^{1 / 2}$ is the Cholesky factor of the time-varying conditional covariance matrix H_{t}, and v_{t} is an $m \times 1$ vector of zero-mean, unit variance, and independent and identically distributed innovations. Various MGARCH models proposed in the literature differ in how they trade off flexibility and parsimony in their specifications for H_{t} (matrix generalization of univariate GARCH models). Increased flexibility allows a model to capture more complex H_{t} processes and increased parsimony makes parameter estimation feasible for more data sets. An important measure of the flexibility parsimony trade-off is how fast the number of model parameters increases with the number of time series m.

The DVECH MGARCH models (Bollerslev, Engle and Wooldridge, 1988), despite large number of parameters and diagonal structure implies that each conditional variance and each conditional covariance depends on its own past but not on the past of the other conditional variances and co-variances. Conditional Correlation MGARCH (CCMGARCH) models use nonlinear combinations of uni-variate GARCH models to represent the conditional covariances. In each of the conditional correlation models, the conditional co-variance matrix is positive definite by construction and has a simple structure which facilitates parameter estimation. In CCMGARCH models, H_{t} is decomposed into a matrix of conditional correlations R_{t} and a diagonal matrix of conditional variancesD ${\mathbf{t}^{*}}^{*}$ The basic CC MGARCH model is written as:

$$
\mathrm{H}_{\mathrm{t}}=\mathrm{D}_{\mathrm{t}}^{1 / 2} \mathrm{R}_{\mathrm{t}} \mathrm{D}_{\mathrm{t}}^{1 / 2}
$$

In the above equation, each conditional variance follows a uni-variate GARCH process and the
parameterizations of R_{t} vary across models. There are three CC models implemented in MGARCH which differ in a way that how they parameterize $\mathbf{R}_{\mathbf{t}}$. These are as follows.

- Constant Conditional Correlation MGARCH Model: The model was proposed by Bollerslev in 1990. In this model the correlation matrix is time invariant. The model restricts R_{t} to a constant matrix, reduces the number of parameters, and simplifies the estimation. But, it may be too strict in many empirical applications.
- Dynamic Conditional Correlation MGARCH Model: In DCCMGARCH model (Engle, 2002) the conditional quasi correlations R_{t} follow a GARCH $(1,1)$ process. To preserve parsimony, the model restricts all the conditional quasi correlations to follow the same dynamics. The DCC model is more flexible than the CCC model without introducing an inestimable number of parameters for a reasonable number of series.
- Varying Conditional Correlation MGARCH Model: In VCCMGARCH model (Tse and Tsui, 2002) the conditional correlations at each period are weighted sum of a time-invariant component, a measure of recent correlations among the residuals, and last period's conditional correlations. The model, for parsimony restricts all the conditional correlations to follow the same dynamics.
To develop a model for predicting the volatility of NRTS caused due to selected macroeconomic determinants, the study used DCC MGARCH model because it is as flexible as VCC MGARCH model, more flexible than CCC, and more parsimonious than the DVECH MGARCH model. In DCC MGARCH models, conditional variances are modeled as univariate GARCH models and the conditional covariances are modeled as nonlinear functions of the conditional variances. The conditional quasi correlation parameters that weight the nonlinear combinations of the conditional variances follow the GARCH-like process (Engle, 2002). MGARCH models are dynamic multivariate regression models in which the conditional variances and co-variances of the errors follow an autoregressive-moving-average structure. MGARCH models differ in the parsimony and flexibility of their specifications for a timevarying conditional covariance matrix of the disturbances, denoted by H_{t}. In a DCC MGARCH model:

$$
h_{i j, t}=p_{i j, t} \sqrt{h_{i i, t} h_{i j, t}}
$$

Here, the diagonal elements $\mathrm{h}_{\mathrm{ii}, \mathrm{t}}$ and $\mathrm{h}_{\mathrm{jj}, \mathrm{t}}$ follow univariate $G A R C H$ processes and $p_{i j}, t, t$ follows the dynamic process. As in $\mathrm{p}_{\mathrm{ij}, \mathrm{t}}$, t varies with time, the model is popularized as the Dynamic Conditional

Correlation MGARCH model. The basic DCC MGARCH model proposed by Engle (2002) can be written as:

$$
\begin{gathered}
y_{t}=C x_{t}+\epsilon_{t}, \epsilon_{t}=H_{t}^{1 / 2} v_{t}, H_{t}=D_{t}^{1 / 2} R_{t} \\
R_{t}=\operatorname{diag}\left(Q_{t}\right)^{-1 / 2} Q_{t} \operatorname{diag}\left(Q_{t}\right)^{-1 / 2}, \text { and } \\
Q_{t}=\left(1-\lambda_{1}-\lambda_{2}\right) R+\lambda_{1} \tilde{\epsilon}_{t-1} \tilde{\epsilon}_{t-1}^{\prime}+\lambda_{2} Q_{t-1}
\end{gathered}
$$

In the above equations, y_{t} is an $m \times 1$ vector of dependent variables; C is a $m \times k$ matrix of parameters; X_{t} is a $k \times 1$ vector of independent variables, which may contain lags of $y_{t} ; H_{t}^{1 / 2}$ is the Cholesky factor of the time-varying conditional covariance matrix $H_{t} ; \mathrm{v}_{\mathrm{t}}$ is an $\mathrm{m} \times 1$ vector of normal, independent and identically distributed innovations; D_{t} is a diagonal matrix of conditional variances; and R_{t} is a matrix of conditional quasi correlations. $\tilde{\epsilon}_{\mathrm{t}}$ is an $\mathrm{m} \times 1$ vector of standardized residuals, $\mathrm{D}_{\mathrm{t}}^{-1 / 2}{ }_{\epsilon_{\mathrm{t}}} ; \lambda_{1}$ and λ_{2} are parameters that govern the dynamics of conditional quasi correlations (these are non-negative
and satisfy $0 \leq \lambda_{1}+\lambda_{2}<1$); and Q_{τ} is the stationary time series. The DCC MGARCH model reduces to the CCC MGARCH model, if $\boldsymbol{\lambda}_{1}=\boldsymbol{\lambda}_{2}=0$.

RESULTS AND DISCUSSION

To explore the existence of causality/ exogeneity between Returns of Monthly Averages of S\&P CNX NIFTY (NRTS) and the selected macroeconomic variables selected from different segments of economy (the real economy indicators, forex market indicators, money market indicators, stock market indicators and commodity market indicators) the Granger causality test in a bivariate VAR framework is applied. The test results explored in bi-variate VAR framework at 5 percent level of significance (table 4 and 5) indicate that DMCP and NRTS, and NRTS and DRPR have unidirectional causality and a bidirectional causal relationship is observed between DBOP and NRTS. All the other variables under study have no causal relation with NRTS.

Table 4: Granger Causality Test for NRTS and Selected Indicators in Bivariate Framework

$\begin{gathered} \hline \text { S. } \\ \text { No. } \end{gathered}$	Null Hypothesis	F-Stat.	$\begin{gathered} \mathbf{P}- \\ \text { Value } \end{gathered}$	$\mathrm{H}_{\mathbf{0}}$ Rejected/Not Rejected	Causality Inference
1	NRTS doesn't Granger cause to DGDP	1.019	0.399	H_{0} Not Rejected	
2	DGDP doesn't Granger cause to NRTS	0.912	0.458	H_{0} Not Rejected	Exogeneity
3	NRTS doesn't Granger cause to DIIP	0.968	0.427	H_{0} Not Rejected	
4	DIIP doesn't Granger cause to NRTS	0.046	0.995	H_{O} Not Rejected	Exogeneity
5	NRTS doesn't Granger cause to DWPI	1.637	0.168	H_{0} Not Rejected	
6	DWPI doesn't Granger cause to NRTS	1.521	0.199	H_{0} Not Rejected	Exogeneity
7	NRTS doesn't Granger cause to DBOP	2.932	0.023*	H_{0} Rejected	Bidirectional Causality
8	DBOP doesn't Granger cause to NRTS	2.372	0.050*	H_{0} Rejected	Feedback
9	NRTS doesn't Granger cause to DFXRE	1.823	0.128	H_{0} Not Rejected	
10	DFXRE doesn't Granger cause to NRTS	1.316	0.267	H_{0} Not Rejected	Exogeneity
11	NRTS doesn't Granger cause to DFXRA	1.207	0.310	H_{0} Not Rejected	
12	DFXRA doesn't Granger cause to NRTS	1.110	0.354	H_{0} Not Rejected	Exogeneity
13	NRTS doesn't Granger cause to DRPR	3.702	0.006*	H_{0} Rejected	nidirectional Causality
14	DRPR doesn't Granger cause to NRTS	1.846	0.123	H_{0} Not Rejected	\rightarrow D
15	NRTS doesn't Granger cause to DTBR	1.444	0.223	H_{0} Not Rejected	
16	DTBR doesn't Granger cause to NRTS	2.045	0.091	H_{0} Not Rejected	Exogeneity
17	NRTS doesn't Granger cause to DPLR	0.498	0.736	H_{0} Not Rejected	
18	DPLR doesn't Granger cause to NRTS	1.128	0.345	H_{0} Not Rejected	Exogeneity
19	NRTS doesn't Granger cause to FII	0.649	0.628	H_{0} Not Rejected	
20	FII doesn't Granger cause to NRTS	2.096	0.084	H_{0} Not Rejected	Exogeneity
21	NRTS doesn't Granger cause to DTRV	0.292	0.882	H_{0} Not Rejected	
22	DTRV doesn't Granger cause to NRTS	0.674	0.610	H_{0} Not Rejected	Exogeneity
23	NRTS doesn't Granger cause to DMCP	0.729	0.573	H_{0} Not Rejected	nidirectional Causality
24	DMCP doesn't Granger cause to NRTS	9.236	0.000*	H_{0} Rejected	DMCP \rightarrow NRTS
25	NRTS doesn't Granger cause to DCRO	1.387	0.241	H_{0} Not Rejected	
26	DCRO doesn't Granger cause to NRTS	1.596	0.179	H_{0} Not Rejected	Exogeneity
27	NRTS doesn't Granger cause to DGLD	0.459	0.765	H_{0} Not Rejected	Exogeneity
28	DGLD doesn't Granger cause to NRTS	0.851	0.494	H_{0} Not Rejected	Exogeneity
29	NRTS doesn't Granger cause to DDSLV	0.230	0.921	H_{0} Not Rejected	oogen
30	DDSLV doesn't Granger cause to NRTS	0.100	0.982	H_{0} Not Rejected	ogeneit
Notes: (i) [*] denotes rejection of null hypothesis at 95% confidence level. (ii) No. of Observations: 140 for all the hypotheses.					

Table 5: Bi-variate VAR Framework for NRTS and Explanatory Variables

Equation No.		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	NRTS $_{\text {t- }}$	NRTS $_{\text {t-4 }}$	DGDP $_{\text {t-1 }}$	DGDP $_{\text {t-2 }}$	DGDP $_{\text {t. }}$	DGDP $_{\text {t. } 4}$	Constant
1	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.423 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.239 \\ & (0.007) \\ & \hline \end{aligned}$	$\begin{gathered} 0.219 \\ (0.013) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.102 \\ (0.216) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.531) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.361) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.000 \\ & (0.618) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.000 \\ (0.109) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.007 \\ (0.187) \\ \hline \end{gathered}$
2	DGDP ${ }_{\text {t }}$	$\begin{gathered} 81735.59 \\ (0.159) \\ \hline \end{gathered}$	$\begin{gathered} 4737.621 \\ (0.940) \\ \hline \end{gathered}$	$\begin{gathered} 76178.45 \\ (0.217) \\ \hline \end{gathered}$	$\begin{gathered} -56787.43 \\ (0.331) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.053 \\ & (0.524) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.069 \\ (0.397) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.185 \\ (0.030) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.047 \\ (0.576) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10216.09 \\ (0.012) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	$\mathrm{NRTS}_{\text {t-3 }}$	NRTS $_{\text {t. }}$	$\mathrm{DIIP}_{\text {t-1 }}$	DIIP ${ }_{\text {t-2 }}$	DIIP ${ }_{\text {t-3 }}$	$\mathrm{DIIP}_{\mathrm{t}-4}$	Constant
3	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.425 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.255 \\ (0.004) \\ \hline \end{gathered}$	$\begin{gathered} 0.236 \\ (0.007) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.110 \\ (0.192) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.720) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.987) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.000 \\ (0.996) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.957) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.006 \\ (0.224) \\ \hline \end{gathered}$
4	DIIP $_{\text {t }}$	$\begin{aligned} & \hline 19.153 \\ & (0.232) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-9.795 \\ & (0.570) \\ & \hline \end{aligned}$	$\begin{aligned} & 29.568 \\ & (0.083) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-5.701 \\ & (0.726) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.684 \\ & (0.000) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.161 \\ & (0.126) \\ & \hline \end{aligned}$	$\begin{gathered} 0.197 \\ (0.063) \\ \hline \end{gathered}$	$\begin{gathered} 0.051 \\ (0.573) \\ \hline \end{gathered}$	$\begin{gathered} 2.260 \\ (0.037) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	NRTS $^{\text {t-2 }}$	$\mathrm{NRTS}_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	$\mathrm{DWPI}_{\text {t-1 }}$	$\mathrm{DWPI}_{\mathrm{t}-2}$	$\mathrm{DWPI}_{\text {t-3 }}$	$\mathrm{DWPI}_{\text {t-4 }}$	Constant
5	NRTS ${ }_{\text {t }}$	$\begin{gathered} \hline 0.423 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.239 \\ (0.007) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.232 \\ (0.008) \\ \hline \end{gathered}$	$\begin{gathered} -0.123 \\ (0.140) \\ \hline \end{gathered}$	$\begin{gathered} -0.004 \\ (0.544) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.911) \\ \hline \end{gathered}$	$\begin{gathered} 0.009 \\ (0.235) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.017 \\ (0.026) \\ \hline \end{gathered}$	$\begin{gathered} 0.012 \\ (0.078) \\ \hline \end{gathered}$
6	DWPI $_{\text {t }}$	$\begin{gathered} \hline 1.050 \\ (0.240) \\ \hline \end{gathered}$	$\begin{gathered} 1.154 \\ (0.228) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.609 \\ (0.521) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.551 \\ (0.542) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.320 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.060 \\ (0.470) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.303 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.267 \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.259 \\ (0.001) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	$\mathrm{NRTS}_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	DBOP_{t-1}	$\mathrm{DBOP}_{\mathrm{t}-2}$	$\mathrm{DBOP}_{\mathrm{t}-3}$	$\mathrm{DBOP}_{\mathrm{t}-4}$	Constant
7	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.377 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.275 \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.203 \\ (0.019) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.142 \\ & (0.081) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.000 \\ (0.303) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.237) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.005) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.301) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.008 \\ (0.097) \\ \hline \end{gathered}$
8	$\mathrm{DBOP}_{\mathrm{t}}$	$\begin{gathered} 87385.92 \\ (0.001) \\ \hline \end{gathered}$	$\begin{gathered} -11175.7 \\ (0.676) \\ \hline \end{gathered}$	$\begin{gathered} 10800.92 \\ (0.683) \\ \hline \end{gathered}$	$\begin{gathered} -17486.41 \\ (0.482) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.056 \\ & (0.502) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.018 \\ (0.815) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.344 \\ & (0.000) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.079 \\ (0.356) \\ \hline \end{gathered}$	$\begin{gathered} -620.345 \\ (0.695) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	$\mathrm{NRTS}_{\text {t- }}$	NRTS $_{\text {t-4 }}$	DFXRE $_{\text {t-1 }}$	DFXRE $_{\text {t-2 }}$	DFXRE $_{\text {t-3 }}$	DFXRE $_{\text {t-4 }}$	Constant
9	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.449 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.220 \\ & (0.015) \\ & \hline \end{aligned}$	$\begin{gathered} 0.201 \\ (0.025) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.084 \\ (0.311) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.000 \\ (0.050) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.514) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.316) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.000 \\ (0.675) \\ \hline \end{gathered}$	$\begin{gathered} 0.008 \\ (0.189) \\ \hline \end{gathered}$
10	DFXRE $_{t}$	$\begin{gathered} 52491.59 \\ (0.075) \\ \hline \end{gathered}$	$\begin{gathered} -5870.142 \\ (0.854) \\ \hline \end{gathered}$	$\begin{gathered} 32335.05 \\ (0.306) \\ \hline \end{gathered}$	$\begin{gathered} \hline 34024.19 \\ (0.249) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.146 \\ (0.083) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.053 \\ (0.529) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.165 \\ (0.057) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.023 \\ & (0.786) \\ & \hline \end{aligned}$	$\begin{gathered} 5321.314 \\ (0.014) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	$\mathrm{NRTS}_{\text {t-2 }}$	$\mathrm{NRTS}_{\text {t-3 }}$	NRTS $_{1-4}$	DFXRA $_{\text {t-1 }}$	DFXRA $_{\text {t-2 }}$	DFXRA $_{\text {t-3 }}$	DFXRA $_{\text {t-4 }}$	Constant
11	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.389 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.283 \\ & (0.004) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.297 \\ (0.002) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.169 \\ (0.071) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.009 \\ (0.298) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.006 \\ & (0.457) \\ & \hline \end{aligned}$	$\begin{gathered} 0.014 \\ (0.117) \\ \hline \end{gathered}$	$\begin{gathered} -0.010 \\ (0.240) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.008 \\ (0.140) \\ \hline \end{gathered}$
12	DFXRA $_{\text {t }}$	$\begin{aligned} & \hline-0.533 \\ & (0.580) \\ & \hline \end{aligned}$	$\begin{gathered} 0.347 \\ (0.733) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-2.138 \\ & (0.034) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.095 \\ (0.922) \\ \hline \end{gathered}$	$\begin{gathered} 0.312 \\ (0.001) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.082 \\ & (0.399) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.137 \\ & (0.157) \\ & \hline \end{aligned}$	$\begin{gathered} 0.130 \\ (0.166) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.036 \\ (0.515) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	$\mathrm{NRTS}_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	$\mathrm{DRPR}_{\mathrm{t}-1}$	$\mathrm{DRPR}_{\mathrm{t}-2}$	$\mathrm{DRPR}_{\text {t-3 }}$	$\mathrm{DRPR}_{\mathrm{t} 4}$	Constant
13	NRTS ${ }_{\text {t }}$	$\begin{gathered} \hline 0.455 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.274 \\ (0.002) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.241 \\ (0.008) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.059 \\ (0.485) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.899) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.016 \\ & (0.084) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.006 \\ (0.476) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.018 \\ (0.038) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.005 \\ (0.337) \\ \hline \end{gathered}$
14	DRPR ${ }_{\text {t }}$	$\begin{aligned} & \hline-0.213 \\ & (0.778) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.975 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.567 \\ & (0.496) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.330 \\ (0.672) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.219 \\ & (0.010) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.317 \\ & (0.000) \\ & \hline \end{aligned}$	$\begin{gathered} 0.044 \\ (0.596) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.057 \\ (0.482) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.087 \\ & (0.077) \\ & \hline \end{aligned}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	$\mathrm{NRTS}_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	$\mathrm{DTBR}_{\text {t-1 }}$	DTBR $_{\text {t-2 }}$	$\mathrm{DTBR}_{\text {t-3 }}$	DTBR $_{\text {t } 4}$	Constant
15	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.423 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.260 \\ (0.003) \\ \hline \end{gathered}$	$\begin{gathered} 0.232 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.098 \\ (0.237) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.020 \\ (0.070) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.009 \\ & (0.423) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.005 \\ & (0.613) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.024 \\ & (0.032) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.006 \\ (0.184) \\ \hline \end{gathered}$
16	DTBR $_{\text {t }}$	$\begin{gathered} \hline 0.365 \\ (0.553) \\ \hline \end{gathered}$	$\begin{gathered} 1.285 \\ (0.053) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.234 \\ & (0.726) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.102 \\ (0.869) \\ \hline \end{gathered}$	$\begin{gathered} 0.107 \\ (0.205) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.000 \\ & (0.994) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.052 \\ (0.541) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.988) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.029 \\ & (0.446) \\ & \hline \end{aligned}$
		NRTS $_{\text {t-1 }}$	$\mathrm{NRTS}_{\text {t-2 }}$	NRTS $_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	$\mathrm{DPLR}_{\mathrm{t}-1}$	$\mathrm{DPLR}_{\mathrm{t}-2}$	$\mathrm{DPLR}_{\mathrm{t}-3}$	$\mathrm{DPLR}_{\mathrm{t}-4}$	Constant
17	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.413 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.233 \\ & (0.009) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.243 \\ (0.005) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.106 \\ & (0.195) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.009 \\ (0.707) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.050 \\ (0.043) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.020 \\ (0.391) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.013 \\ (0.555) \\ \hline \end{gathered}$	$\begin{gathered} 0.007 \\ (0.181) \\ \hline \end{gathered}$
18	DPLR ${ }_{\text {t }}$	$\begin{gathered} 0.189 \\ (0.503) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.336 \\ (0.261) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.010 \\ (0.972) \\ \hline \end{gathered}$	$\begin{gathered} 0.154 \\ (0.575) \\ \hline \end{gathered}$	$\begin{gathered} 0.017 \\ (0.829) \\ \hline \end{gathered}$	$\begin{gathered} 0.355 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.074 \\ (0.346) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.153 \\ & (0.053) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.004 \\ (0.807) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	NRTS $_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	$\mathrm{FII}_{\text {t-1 }}$	$\mathrm{FII}_{\mathrm{t}-2}$	$\mathrm{FII}_{\text {t-3 }}$	FIIt ${ }_{\text {t-4 }}$	Constant
19	NRTS ${ }_{\text {t }}$	$\begin{gathered} \hline 0.334 \\ (0.000) \end{gathered}$	$\begin{aligned} & \hline-0.227 \\ & (0.017) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.215 \\ (0.019) \end{gathered}$	$\begin{gathered} \hline-0.094 \\ (0.275) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.006) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.000 \\ (0.348) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.673) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.000 \\ (0.286) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.004 \\ (0.440) \end{gathered}$
20	FII ${ }_{\text {t }}$	$\begin{gathered} 641.839 \\ (0.944) \\ \hline \end{gathered}$	$\begin{gathered} -4855.599 \\ (0.610) \end{gathered}$	$\begin{gathered} 14981.32 \\ (0.103) \\ \hline \end{gathered}$	$\begin{gathered} -1404.536 \\ (0.872) \end{gathered}$	$\begin{gathered} 0.312 \\ (0.001) \\ \hline \end{gathered}$	$\begin{gathered} 0.101 \\ (0.292) \\ \hline \end{gathered}$	$\begin{gathered} 0.092 \\ (0.338) \\ \hline \end{gathered}$	$\begin{gathered} -0.058 \\ (0.534) \\ \hline \end{gathered}$	$\begin{gathered} 1582.194 \\ (0.009) \end{gathered}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	NRTS $_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	DTRV $_{\text {t-1 }}$	DTRV $_{\text {t-2 }}$	DTRV $_{\text {t-3 }}$	DTRV $_{\text {t-4 }}$	Constant
21	NRTS $_{\text {t }}$	$\begin{gathered} \hline 0.441 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.268 \\ & (0.003) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.246 \\ (0.005) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.108 \\ & (0.193) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.000 \\ (0.684) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.694) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.000 \\ (0.523) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.000 \\ & (0.588) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.007 \\ (0.182) \\ \hline \end{gathered}$
22	DTRV	$\begin{aligned} & 61.266 \\ & (0.953) \end{aligned}$	$\begin{gathered} -726.456 \\ (0.515) \end{gathered}$	$\begin{gathered} 1082.802 \\ (0.328) \end{gathered}$	$\begin{aligned} & -20.251 \\ & (0.984) \end{aligned}$	$\begin{aligned} & -0.785 \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.193 \\ & (0.077) \end{aligned}$	$\begin{aligned} & -0.155 \\ & (0.156) \end{aligned}$	$\begin{aligned} & \hline-0.147 \\ & (0.088) \end{aligned}$	$\begin{aligned} & \hline 50.525 \\ & (0.446) \end{aligned}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	NRTS $_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	$\mathrm{DMCP}_{\text {t-1 }}$	$\mathrm{DMCP}_{\mathrm{t}-2}$	$\mathrm{DMCP}_{\mathrm{t}-3}$	$\mathrm{DMCP}_{\text {t-4 }}$	Constant
23	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.194 \\ (0.062) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.061 \\ (0.555) \\ \hline \end{gathered}$	$\begin{gathered} 0.177 \\ (0.078) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.220 \\ (0.008) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.000 \\ (0.171) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.000 \\ & (0.204) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.000 \\ (0.031) \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ (0.235) \\ \hline \end{gathered}$
24	DMCP ${ }_{\text {t }}$	$\begin{gathered} 559048.8 \\ (0.303) \\ \hline \end{gathered}$	$\begin{gathered} -382442.8 \\ (0.477) \\ \hline \end{gathered}$	$\begin{gathered} 471265.7 \\ (0.368) \\ \hline \end{gathered}$	$\begin{array}{r} -515257 \\ (0.237) \\ \hline \end{array}$	$\begin{gathered} -0.021 \\ (0.842) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.029 \\ (0.810) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.007 \\ & (0.953) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 0.176 \\ (0.151) \\ \hline \end{array}$	$\begin{gathered} 34453.94 \\ (0.164) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	$\mathrm{NRTS}_{\text {t-2 }}$	NRTS $_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	$\mathrm{DCRO}_{\text {t-1 }}$	$\mathrm{DCRO}_{\mathrm{t}-2}$	$\mathrm{DCRO}_{\text {t-3 }}$	$\mathrm{DCRO}_{\text {t-4 }}$	Constant
25	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.411 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.264 \\ & (0.003) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.207 \\ (0.020) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.056 \\ & (0.508) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.000 \\ (0.767) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.001 \\ (0.345) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.466) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.002 \\ & (0.015) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.007 \\ (0.170) \\ \hline \end{gathered}$
26	DCRO ${ }_{\text {t }}$	$\begin{gathered} 9.502 \\ (0.159) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-4.725 \\ & (0.509) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-1.767 \\ (0.803) \\ \hline \end{array}$	$\begin{aligned} & 11.223 \\ & (0.099) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.308 \\ (0.001) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.278 \\ (0.003) \\ \hline \end{gathered}$	$\begin{array}{r} \hline-0.059 \\ (0.520) \\ \hline \end{array}$	$\begin{array}{r} \hline-0.196 \\ (0.025) \\ \hline \end{array}$	$\begin{gathered} 0.247 \\ (0.554) \\ \hline \end{gathered}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	NRTS $_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	DGLD $_{\text {t-1 }}$	DGLD $_{\text {t-2 }}$	$\mathrm{DGLD}_{\text {t-3 }}$	DGLD $_{\text {t-4 }}$	Constant
27	NRTS ${ }_{\text {t }}$	$\begin{gathered} \hline 0.429 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.242 \\ & (0.006) \\ & \hline \end{aligned}$	$\begin{gathered} 0.237 \\ (0.007) \end{gathered}$	$\begin{aligned} & \hline-0.117 \\ & (0.153) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-0.000 \\ (0.276) \\ \hline \end{array}$	$\begin{gathered} \hline 0.000 \\ (0.154) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.554) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.890) \\ \hline \end{gathered}$	$\begin{gathered} 0.005 \\ (0.373) \\ \hline \end{gathered}$
28	DGLD ${ }_{\text {t }}$	$\begin{gathered} 277.625 \\ (0.595) \\ \hline \end{gathered}$	$\begin{array}{r} 379.966 \\ (0.497) \\ \hline \end{array}$	$\begin{array}{r} 145.730 \\ (0.7920) \\ \hline \end{array}$	$\begin{gathered} -395.942 \\ (0.444) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 0.024 \\ (0.773) \\ \hline \end{array}$	$\begin{aligned} & \hline-0.058 \\ & (0.492) \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 0.039 \\ (0.644) \\ \hline \end{array}$	$\begin{gathered} \hline 0.040 \\ (0.638) \\ \hline \end{gathered}$	$\begin{array}{r} 110.321 \\ (0.004) \\ \hline \end{array}$
		NRTS $_{\text {t-1 }}$	NRTS $_{\text {t-2 }}$	NRTS $_{\text {t-3 }}$	NRTS $_{\text {t-4 }}$	DDSLV_{t-1}	$\mathrm{DDSLV}_{\mathrm{t}-2}$	DDSLV $_{\text {t-3 }}$	DDSLV $_{\text {t-4 }}$	Constant
29	NRTS ${ }_{\text {t }}$	$\begin{gathered} 0.423 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.249 \\ & (0.006) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.227 \\ (0.011) \\ \hline \end{gathered}$	$\begin{gathered} -0.095 \\ (0.255) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.825) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.000 \\ (0.959) \\ \hline \end{gathered}$	$\begin{gathered} 0.000 \\ (0.683) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.000 \\ (0.772) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 0.006 \\ (0.192) \\ \hline \end{array}$
30	DDSLV ${ }_{\text {t }}$	468.552 (0.775	62.141 (0.704)	$\begin{array}{r} \hline-736.36 \\ (0.670) \\ \hline \end{array}$	957.419 (0.555	$\begin{gathered} \hline-0.444 \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} -0.609 \\ (0.000) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.310 \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.029 \\ (0.753) \\ \hline \end{gathered}$	$\begin{aligned} & 156.594 \\ & (0.401) \\ & \hline \end{aligned}$
(i) Related P-values are shown in parentheses "()". (ii) Significant at 95% confidence level. (iii) Variable labels without any prefix are stationary at their own level, I (0); labels prefixed with D are stationary after differencing once, I (1); and the variables prefixed with DD are stationary after differencing twice, I (2).										

As the results of VAR and causality test in bi-variate framework are not suitable for drawing valid conclusions, and attempt was made to apply Granger causality test in a multivariate VAR framework. The results contained in table 6 and 7 reveal that apart from the results of causality relation in bi-variate VAR framework (viz., NRTS is a Granger cause to DBOP and DRPR, and DBOP and DMCP is a Granger cause to NRTS), there are some more causal relations in multivariate VAR framework. These are:

- NRTS is affected by DBOP and DMCP. Bidirectional causal relationship is observed between NRTS and DBOP.
- DIIP is affected by DGDP and DWPI, and DWPI is affected by DGDP and DIIP. Thus, DGDP is a granger cause to DIIP and DWPI. Further, DIIP
and DWPI are found to have bi-directional causality (relationship of Feedback).
- DBOP is influenced by NRTS, DFXRE, and DFXRA; while DFXRE is affected by DBOP and DFXRA. Bilateral causality is observed between DBOP and DFXRE, and DFXRE and DFXRA.
- Among money market indicators, DRPR is affected by NRTS, DTBR and DPLR; while DTBR explain variations in DPLR.
- FII is a factor which affects changes in DMCP, but it is affected by DTRV. DMCP is found to be a granger cause to NRTS.
- DDSLV is a granger cause to DCRO and DGLD. DGLD and DDSLV have bidirectional causality, (i.e., relationship of Feedback).

Table 6: Granger Causality Test for NRTS and Selected Indicators in Multivariate Framework
NRTS and Real Economy Indicators

NRTS and Real Economy Indicators					
S. No.	Null Hypothesis	F- Stat.	$\begin{gathered} \text { P- } \\ \text { Value } \end{gathered}$	H_{O} Rejected/ Not Rejected	Causality Inference
1	NRTS doesn't Granger Cause to DGDP	1.019	0.399	H_{O} Not Rejected	Exogeneity
2	DGDP doesn't Granger Cause to NRTS	0.912	0.458	H_{O} Not Rejected	
3	NRTS doesn't Granger Cause to DIIP	0.968	0.427	H_{O} Not Rejected	Exogeneity
4	DIIP doesn't Granger Cause to NRTS	0.046	0.995	H_{O} Not Rejected	
5	NRTS doesn't Granger Cause to DWPI	1.637	0.168	H_{O} Not Rejected	Exogeneity
6	DWPI doesn't Granger Cause to NRTS	1.521	0.199	H_{O} Not Rejected	
7	DGDP doesn't Granger Cause to DIIP	25.490	0.000*	H_{O} Rejected	Unidirectional Causality DGDP \rightarrow DIIP
8	DIIP doesn't Granger Cause to DGDP	0.690	0.599	H_{O} Not Rejected	
9	DGDP doesn't Granger Cause to DWPI	2.905	0.024*	H_{O} Rejected	Unidirectional Causality DGDP \rightarrow DWPI
10	DWPI doesn't Granger Cause to DGDP	2.270	0.065	H_{O} Not Rejected	
11	DIIP doesn't Granger Cause to DWPI	4.618	0.001*	H_{O} Rejected	Bidirectional Causality Feedback
12	DWPI doesn't Granger Cause to DIIP	3.515	0.009*	H_{O} Rejected	
NRTS and Forex Market Indicators					
1	NRTS doesn't Granger Cause to DBOP	2.932	0.023*	H_{O} Rejected	Bidirectional Causality Feedback
2	DBOP doesn't Granger Cause to NRTS	2.372	0.050*	H_{O} Rejected	
3	NRTS doesn't Granger Cause to DFXRE	1.823	0.128	H_{O} Not Rejected	Exogeneity
4	DFXRE doesn't Granger Cause to NRTS	1.316	0.267	H_{O} Not Rejected	
5	NRTS doesn't Granger Cause to DFXRA	1.207	0.310	H_{O} Not Rejected	Exogeneity
6	DFXRA doesn't Granger Cause to NRTS	1.110	0.354	H_{O} Not Rejected	
7	DBOP doesn't Granger Cause to DFXRE	3.457	0.010*	H_{O} Rejected	Bidirectional Causality Feedback
8	DFXRE doesn't Granger Cause to DBOP	5.825	0.000*	H_{O} Rejected	
9	DBOP doesn't Granger Cause to DFXRA	1.978	0.101	H_{O} Not Rejected	Unidirectional Causality DFXRA \rightarrow DBOP
10	DFXRA doesn't Granger Cause to DBOP	3.931	0.004*	H_{O} Rejected	
11	DFXRE doesn't Granger Cause to DFXRA	8.225	0.000*	H_{O} Rejected	Bidirectional Causality Feedback
12	DFXRA doesn't Granger Cause to DFXRE	5.026	0.000*	H_{O} Rejected	
NRTS and Money Market Indicators					
1	NRTS doesn't Granger Cause to DRPR	3.702	0.006*	H_{O} Rejected	Unidirectional Causality NRTS \rightarrow DRPR
2	DRPR doesn't Granger Cause to NRTS	1.846	0.123	H_{O} Not Rejected	
3	NRTS doesn't Granger Cause to DTBR	1.444	0.223	H_{O} Not Rejected	Exogeneity
4	DTBR doesn't Granger Cause to NRTS	2.045	0.091	H_{O} Not Rejected	
5	NRTS doesn't Granger Cause to DPLR	0.498	0.736	H_{O} Not Rejected	Exogeneity
6	DPLR does not Granger Cause to NRTS	1.128	0.345	H_{O} Not Rejected	
7	DRPR does not Granger Cause to DTBR	0.843	0.499	H_{O} Not Rejected	Unidirectional Causality DTBR \rightarrow DRPR
8	DTBR does not Granger Cause to DRPR	3.874	0.005*	H_{O} Rejected	
9	DRPR does not Granger Cause to DPLR	1.453	0.220	H_{O} Not Rejected	Unidirectional Causality DPLR \rightarrow DRPR
10	DPLR does not Granger Cause to DRPR	4.713	0.001*	H_{O} Rejected	
11	DTBR does not Granger Cause to DPLR	4.434	0.002*	H_{O} Rejected	Unidirectional Causality DTBR \rightarrow DPLR
12	DPLR does not Granger Cause to DTBR	1.583	0.182	H_{O} Not Rejected	
NRTS and Stock Market Indicators					
1	NRTS doesn't Granger Cause to FII	0.649	0.628	H_{O} Not Rejected	Exogeneity
2	FII doesn't Granger Cause to NRTS	2.096	0.084	H_{O} Not Rejected	
3	NRTS doesn't Granger Cause to DTRV	0.292	0.882	H_{O} Not Rejected	Exogeneity

4	DTRV doesn't Granger Cause to NRTS	0.674	0.610	H_{O} Not Rejected	
5	NRTS doesn't Granger Cause to DMCP	0.729	0.573	H_{O} Not Rejected	Unidirectional Causality DMCP \rightarrow NRTS
6	DMCP doesn't Granger Cause to NRTS	9.236	0.000*	H_{O} Rejected	
7	FII doesn't Granger Cause to DTRV	1.617	0.173	H_{O} Not Rejected	Unidirectional Causality DTRV \rightarrow FII
8	DTRV doesn't Granger Cause to FII	2.677	0.034*	H_{O} Rejected	
9	FII doesn't Granger Cause to DMCP	3.132	0.016*	H_{O} Rejected	Unidirectional Causality FII \rightarrow DMCP
10	DMCP doesn't Granger Cause to FII	2.156	0.077	H_{O} Not Rejected	
11	DTRV doesn't Granger Cause to DMCP	0.397	0.810	H_{O} Not Rejected	Exogeneity
12	DMCP doesn't Granger Cause to DTRV	0.422	0.792	H_{O} Not Rejected	
NRTS and Commodity Market Indicators					
1	NRTS does not Granger Cause to DCRO	1.387	0.241	H_{O} Not Rejected	Exogeneity
2	DCRO does not Granger Cause to NRTS	1.596	0.179	H_{O} Not Rejected	
3	NRTS does not Granger Cause to DGLD	0.459	0.765	H_{O} Not Rejected	Exogeneity
4	DGLD does not Granger Cause to NRTS	0.851	0.494	H_{O} Not Rejected	
5	NRTS doesn't Granger Cause to DDSLV	0.230	0.921	H_{O} Not Rejected	Exogeneity
6	DDSLV doesn't Granger Cause to NRTS	0.100	0.982	H_{O} Not Rejected	
7	DCRO doesn't Granger Cause to DGLD	0.914	0.457	H_{O} Not Rejected	Exogeneity
8	DGLD doesn't Granger Cause to DCRO	1.830	0.126	H_{O} Not Rejected	
9	DCRO doesn't Granger Cause to DDSLV	2.193	0.073	H_{O} Not Rejected	Unidirectional Causality DDSLV \rightarrow DCRO
10	DDSLV doesn't Granger Cause to DCRO	4.254	0.002*	H_{O} Rejected	
11	DGLD doesn't Granger Cause to DDSLV	3.835	0.005*	H_{O} Rejected	Bidirectional Causality Feedback
12	DDSLV doesn't Granger Cause to DGLD	2.890	0.024*	H_{O} Rejected	
Notes: (i) [*] denotes rejection of null hypothesis at 95% confidence level. (ii) No. of Observations: 140 for all the hypotheses.					

Table 7: VAR Framework for NRTS and Selected Macroeconomic Indicators in Multivariate Framework

NRTS and Stock Market Indicators

NRTS and Commodity Market Indicators

Notes: (i) Related P-values are showing in parentheses "()". (ii) Significant at 95% confidence level.

In order to develop an appropriate causality model for predicting the behavior of NRTS caused due to selected macroeconomic variables an attempt was made to examine causal relation among all the explanatory and explained variables. The causality matrix (tables 8) indicated following relations.

- NRTS is Granger cause to DBOP and DRPR
- DGDP is Granger cause to DIIP, DWPI, FII and DMCP
- DIIP is Granger cause to DWPI, DFXRA, DTBR, DPLR, FII, DTRV, DCRO and DGLD
- DWPI is Granger cause to DIIP, DBOP, DTBR, DPLR, DCRO and DDSLV
- DBOP is Granger cause to NRTS, DIIP, DFXRE, DMCP, DCRO and DGLD
- DFXRE is Granger cause to DIIP, WPI, DBOP, DFXRA and DPLR
- DFXRA is Granger cause to DWPI, DBOP, DFXRE, DTRV and DMCP
- DRPR is not a Granger cause to any variable.
- DTBR is Granger cause to DGDP, DRPR, DPLR, FII and DTRV
- DPLR is Granger cause to DGDP, DRPR and DCRO
- FII is Granger cause to DGDP, DIIP, DWPI, DFXRA, DTBR, DMCP and DCRO
- DTRV is Granger cause to DIIP, DFXRA, FII and DDSLV
- DMCP is Granger cause to NRTS, DIIP, DWPI, DBOP, DFXRE, DFXRA, DCRO and DGLD
- DCRO is Granger cause to DWPI, DRPR, DTBR, DPLR and DMCP
- DGLD is Granger cause to DIIP, DWPI, DFXRE, DTRV and DDSLV
- DDSLV is Granger cause to DFXRE, DCRO and DGLD

The results of Granger causality are neither exhaustive not coincide with the theoretical foundations and literature available on economic relation among these variables, hence do not seem capable of further analysis for examining impact of macroeconomic determinants on stock market volatility. Although, some statements are in line with the fundamentals of economic theory, but others are illusionary. To cite, DCRO affects DRPR, DTBR and DPLR. Economic theory suggests no causal relationship between an internationally traded commodity and the interest rates structure that exists in the domestic money market.

Table 8: Causality Matrix for all Explanatory and Explained Variables

	NRTS	D	DIIP	D	DBOP	DFXRE	RFXRA	DRPR	DTBR	DPLR	FII	DTRV	D	DCRO	DGLD	
NRTS					$\begin{gathered} 2.932 \\ (0.02)^{*} \end{gathered}$	$\begin{aligned} & 1.8231 \\ & (0.12) \end{aligned}$	$\begin{gathered} 1.207 \\ (0.31) \\ \hline \end{gathered}$	$\begin{gathered} 3.702 \\ (0.00)^{*} \end{gathered}$								$\begin{aligned} & \hline 0.230 \\ & (0.92) \\ & \hline \end{aligned}$
DGDP	$\begin{aligned} & 0.912 \\ & (0.45) \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 25.490 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{gathered} \hline 2.905 \\ (0.02)^{*} \\ \hline \end{gathered}$	$\begin{array}{r} 0.827 \\ (0.50) \\ \hline \end{array}$	$\begin{aligned} & 0.930 \\ & (0.44) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.583 \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{gathered} 0.118 \\ (0.97) \\ \hline \end{gathered}$	$\begin{aligned} & 0.275 \\ & (0.89) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.355 \\ & (0.83) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2.958 \\ (0.02)^{*} \\ \hline \end{array}$	$\begin{array}{r} 2.035 \\ (0.09) \\ \hline \end{array}$	$\begin{gathered} 4.423 \\ (0.00)^{*} \\ \hline \end{gathered}$	$\begin{aligned} & 0.328 \\ & (0.85) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.662 \\ & (0.16) \\ & \hline \end{aligned}$	
DI	$\begin{array}{r} 0.046 \\ (0.99) \\ \hline \end{array}$			$\begin{gathered} 4.618 \\ (0.00)^{*} \\ \hline \end{gathered}$	$\begin{aligned} & 0.240 \\ & (0.91) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.325 \\ (0.86) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.851 \\ (0.02)^{*} \\ \hline \end{array}$	$\begin{aligned} & 0.258 \\ & (0.90) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3.646 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{gathered} 2.770 \\ (0.02)^{*} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.425 \\ (0.05)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.892 \\ (0.00)^{*} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 2.753 \\ (0.03)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2.388 \\ (0.05)^{*} \\ \hline \end{array}$	
DWP								$\begin{aligned} & \hline 2.217 \\ & (0.07) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 4.013 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.503 \\ (0.00) * \\ \hline \end{array}$			$\begin{array}{r} 1.223 \\ (0.30) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.761 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & 1.491 \\ & (0.20) \\ & \hline \end{aligned}$	
O	$\begin{gathered} 2.373 \\ (0.05)^{*} \end{gathered}$	$\begin{aligned} & 0.005 \\ & (0.99) \end{aligned}$	$\begin{array}{\|c} \hline 2.97 \\ (0.02) \end{array}$			$\begin{array}{\|c\|} \hline 3.457 \\ (0.01)^{*} \\ \hline \end{array}$		$\begin{aligned} & \hline 0.216 \\ & (0.92) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.253 \\ & (0.29) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.578 \\ & (0.67) \\ & \hline \end{aligned}$					$\begin{array}{\|c\|} \hline 3.382 \\ (0.01)^{*} \\ \hline \end{array}$	
DFXR	$\begin{array}{\|l} 1.316 \\ (0.26) \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 2.331 \\ (0.05)^{*} \\ \hline \end{array}$	$\begin{gathered} \hline 4.465 \\ (0.00)^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.825 \\ (0.00)^{*} \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 8.225 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & 1.527 \\ & (0.19) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.815 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 4.110 \\ (0.00) * \\ \hline \end{array}$	$\begin{aligned} & 0.428 \\ & (0.78) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.234 \\ & (0.91) \\ & \hline \end{aligned}$	$\begin{array}{r} 1.050 \\ (0.38) \\ \hline \end{array}$	$\begin{aligned} & 1.987 \\ & (0.10) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.357 \\ & (0.25) \\ & \hline \end{aligned}$	$\begin{array}{r} 1.097 \\ (0.36) \\ \hline \end{array}$
XR	$\begin{array}{\|c\|} \hline 1.110 \\ (0.35) \\ \hline \end{array}$		$\begin{aligned} & 1.091 \\ & (0.36) \\ & \hline \end{aligned}$	$\begin{gathered} 2.614 \\ (0.03)^{*} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.931 \\ (0.00)^{*} \\ \hline \end{array}$					$\begin{aligned} & 1.373 \\ & (0.24) \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline 2.873 \\ (0.02)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.118 \\ (0.01)^{*} \\ \hline \end{array}$			
DRPR	$\begin{aligned} & 1.846 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.489 \\ & (0.20) \\ & \hline \end{aligned}$	0.188 (0.94)	$\begin{aligned} & 2.179 \\ & (0.07) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.891 \\ & (0.47) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.089 \\ & (0.36) \\ & \hline \end{aligned}$				$\begin{aligned} & 1.453 \\ & (0.22) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.110 \\ & (0.97) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.070 \\ & (0.37) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.719 \\ & (0.57) \\ & \hline \end{aligned}$		$\begin{aligned} & 0.264 \\ & (0.90) \end{aligned}$	
$\overline{\mathrm{TBR}}$	$\begin{array}{r} 2.045 \\ (0.09) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.226 \\ (0.01)^{*} \\ \hline \end{array}$								$\begin{gathered} 4.434 \\ (0.00)^{*} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4.188 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.307 \\ (0.01)^{*} \\ \hline \end{array}$	$\begin{array}{r} 2.258 \\ (0.06) \\ \hline \end{array}$			
$\overline{\mathrm{DPLF}}$	$\begin{aligned} & 1.128 \\ & (0.34 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3.346 \\ (0.01)^{*} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.894 \\ & (0.46) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.320 \\ & (0.06) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.961 \\ & (0.43) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.958 \\ & (0.10) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.270 \\ & (0.89) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 4.713 \\ (0.00)^{*} \\ \hline \end{array}$	(0.18)		$\begin{array}{\|l\|} \hline 0.330 \\ (0.85) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.836 \\ & (0.50) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.722 \\ & (0.57) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3.140 \\ (0.01)^{*} \\ \hline \end{array}$	$\begin{aligned} & 1.287 \\ & (0.27) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.342 \\ & (0.25) \\ & \hline \end{aligned}$
$\xrightarrow{\text { FII }}$	$\begin{aligned} & 2.096 \\ & (0.08) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 4.983 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.483 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.145 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & 0.772 \\ & (0.54) \\ & \hline \end{aligned}$	$\begin{array}{r} 1.441 \\ (0.22) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.843 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & 1.845 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2.339 \\ (0.05)^{*} \\ \hline \end{array}$	(0.34)		$\begin{aligned} & 1.617 \\ & (0.17) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3.132 \\ (0.01)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6.792 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & 1.739 \\ & (0.14) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.886 \\ & (0.11) \end{aligned}$
$\begin{array}{r} \hline \text { DTR } \\ \\ \hline \end{array}$	$\begin{aligned} & \hline 0.674 \\ & (0.61) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.462 \\ & (0.21) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3.546 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.354 \\ & (0.84) \end{aligned}$	$\begin{aligned} & \hline 0.852 \\ & (0.49) \\ & \hline \end{aligned}$	$\begin{gathered} 1.009 \\ (0.40) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.167 \\ (0.01)^{*} \\ \hline \end{array}$	$\begin{aligned} & \hline 0.212 \\ & (0.93) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.141 \\ & (0.96) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.808 \\ & (0.13) \\ & \hline \end{aligned}$	$(0.03)^{*}$		$\begin{aligned} & \hline 0.397 \\ & (0.81) \end{aligned}$	$\begin{aligned} & \hline 0.543 \\ & (0.70) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.070 \\ & (0.37) \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 4.002 \\ (0.00)^{*} \\ \hline \end{array}$
$\underset{\substack{\mathrm{DMCF} \\ \rightarrow}}{ }$	$\begin{gathered} 9.236 \\ (0.00)^{*} \\ \hline \end{gathered}$	$\begin{aligned} & 1.518 \\ & (0.20) \\ & \hline \end{aligned}$	$\begin{gathered} 2.546 \\ (0.04)^{*} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.824 \\ (0.02)^{*} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 3.692 \\ (0.00)^{*} \end{array}$	$\begin{array}{\|c\|} \hline 3.831 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.163 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & 1.495 \\ & (0.20) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.743 \\ & (0.14) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.801 \\ & (0.13) \end{aligned}$	$\begin{array}{\|l} \hline 2.156 \\ (0.07) \\ \hline \end{array}$			$\begin{gathered} 2.439 \\ (0.05)^{*} \end{gathered}$	$\begin{array}{\|c\|} \hline 2.651 \\ (0.03)^{*} \\ \hline \end{array}$	$\begin{aligned} & 1.224 \\ & (0.30) \end{aligned}$
$\begin{gathered} \text { DCRO } \\ \rightarrow \end{gathered}$	$\begin{array}{\|l} 1.596 \\ (0.17) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.635 \\ (0.16) \\ \hline \end{array}$	$\begin{array}{r} 0.634 \\ (0.63) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8.658 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & 2.023 \\ & (0.09) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.759 \\ (0.55) \\ \hline \end{array}$	$\begin{gathered} 0.928 \\ (0.44) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5.268 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5.441 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 2.490 \\ (0.04) * \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.664 \\ (0.61) \\ \hline \end{array}$	$\begin{array}{r} 1.652 \\ (0.16) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 2.982 \\ (0.02)^{*} \\ \hline \end{array}$		$\begin{array}{r} 0.914 \\ (0.45) \\ \hline \end{array}$	$\begin{array}{r} 2.193 \\ (0.07) \\ \hline \end{array}$
DGLD	$\begin{aligned} & 0.851 \\ & (0.49) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.863 \\ & (0.48) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2.381 \\ (0.05)^{*} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.515 \\ (0.00)^{*} \\ \hline \end{array}$	$\begin{aligned} & 0.356 \\ & (0.83) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 2.409 \\ (0.05)^{*} \\ \hline \end{array}$	$\begin{gathered} 0.909 \\ (0.46) \\ \hline \end{gathered}$	$\begin{aligned} & 0.462 \\ & (0.76) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.906 \\ & (0.11) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.024 \\ & (0.09) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.529 \\ & (0.71) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3.116 \\ (0.01)^{*} \\ \hline \end{array}$	$\begin{aligned} & 0.257 \\ & (0.90) \\ & \hline \end{aligned}$	$\begin{array}{r} 1.830 \\ (0.12) \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 3.835 \\ (0.00)^{*} \\ \hline \end{array}$
DDSLV	0.100 (0.98)	0.144 (0.96)	1.628 (0.17)	1.701 (0.15)	$\begin{aligned} & \hline 0.891 \\ & (0.47) \\ & \hline \end{aligned}$	2.793 $(0.02) *$	$\begin{aligned} & 1.221 \\ & (0.30) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.223 \\ & (0.92) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.979 \\ & (0.42) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.292 \\ & (0.27) \\ & \hline \end{aligned}$	$\begin{array}{r} 1.145 \\ (0.33) \\ \hline \end{array}$	$\begin{aligned} & 1.345 \\ & (0.25) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.689 \\ (0.60) \\ \hline \end{array}$	$\begin{gathered} \hline 4.254 \\ (0.00) * \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 2.890 \\ (0.02) * \\ \hline \end{array}$	

Notes: (i) [*] denotes rejection of null hypothesis at 95% confidence level. (ii) No. of Observations: 140.
(iii) $[\rightarrow]$ shows the direction of causality hypothesized.

To look into the association of macroeconomic environment of the country and stock market performance, as discussed earlier, the study used DCC MGARCH model. The basic requirements of DCC MGARCH model are: (i) Q_{t} should always be a stationary time series, and (ii) Wald Chi^{2} test must reject the null hypothesis that all the coefficients on the independent variables in the
mean equations are zero. The time series data under consideration is already declared stationary (table 2). The results of Wald Chi ${ }^{2}$ test presented in table 9 show that null hypothesis for all the variables under consideration are rejected at the 1 percent level of significance. Thus, the coefficients on all the independent variables one-by-one in the mean equations are non-zero.

Table 9: Results of Wald Chi ${ }^{2}$ Test for DCCMGARCH Models

S. No.	DCC-MGARCH Model	Wald Chi - statistics	P-value
1.	NRTS and DGDP	96.470	0.000^{*}
2.	NRTS and DIIP	97.570	0.000^{*}
3.	NRTS and DWPI	26.420	0.000^{*}
4.	NRTS and DBOP	21.260	0.000^{*}
5.	NRTS and DFXRE	274.330	0.000^{*}
6.	NRTS and DFXRA	275.370	0.000^{*}
7.	NRTS and DRPR	186.300	0.000^{*}
8.	NRTS and DTBR	370.640	0.000^{*}
9.	NRTS and DPLR	20541.700	0.000^{*}
10.	NRTS and FII	384.050	0.000^{*}
11.	NRTS and DTRV	164.320	0.000^{*}
12.	NRTS and DMCP	589.530	0.000^{*}
13.	NRTS and DCRO	347.730	0.000^{*}
14.	NRTS and DGLD	187.310	0.000^{*}
15.	NRTS and DDSLV	226.230	0.000^{*}
Notes: confidence level. denotes rejection of null hypothesis at 99^{*}			

The results of DCC MGARCH models for NRTS and selected macroeconomic indicators group-wise (i.e., Real Economic Indicators, Forex Market Indicators, Money Market Indicators, Stock Market Indicators, and Commodity Market Indicators) presented in table 10 indicate that:

- Each of the univariate ARCH, univariate GARCH and DCC parameters of all the macroeconomic indicators under consideration, except WPI (significant at 4 percent) and TBR (significant at 2 percent) is statistically significant at 1 percent level of significance.
- The Dynamic Conditional Correlation Coefficient is positive for almost all the variables. It indicates that macroeconomic variables under study and stock market indicators (NRTS) rise or fall in the same direction. Negative DCC coefficients for DGDP, DWPI, DFXRA and DPLR are the signposts of their negative relation with NRTS.
- The estimates for adjustment parameters λ_{1} and λ_{2} are also statistically significant and satisfy the condition of $0 \leq \lambda_{1}+\lambda_{2}<1$ for all the DCC MGARCH models for NRTS and macroeconomic indicators. All this indicate that the assumption of time-invariant conditional correlations maintained in the DCC MGARCH models is restrictive.

Table 10: Results of DCC MGARCH $(1,1)$ Models

NRTS and Real Economy Indicators				
Coefficient				
NRTS and DGDP	Z-statistics	P-value		
ARCH_NRTS	ARCH (1,1)	0.041	0.133	0.320
ARC.	0.000^{*}			
GARCH (1,1)	-0.097	0.842	-0.120	0.000^{*}
ARCH_DGDP				
ARCH (1,1)	-0.064	0.051	-0.110	0.000^{*}
GARCH (1,1)	-0.089	0.053	-0.140	0.000^{*}
Dynamic Conditional Correlation				

Rho	-0.079	0.109	-0.730	0.000
λ_{1}	0.048	0.465	0.100	0.000
λ_{2}	0.103	1.120	0.090	0.000
NRTS and DIIP				
ARCH_NRTS				
ARCH (1,1)	0.065	0.059	1.100	0.001*
GARCH (1,1)	0.795	0.116	6.830	0.000*
ARCH_DIIP				
ARCH (1,1)	0.124	0.041	3.030	0.002*
GARCH (1,1)	0.899	0.043	20.550	0.000*
Dynamic Conditional Correlation				
rho	0.089	0.241	0.370	0.001
λ_{1}	0.025	0.066	0.380	0.001
λ_{2}	0.926	0.098	9.380	0.000
NRTS and DWPI				
ARCH_NRTS				
$\operatorname{ARCH}(1,1)$	0.128	0.132	0.970	0.000*
GARCH (1,1)	0.151	0.853	1.310	0.000*
ARCH_DWPI				
ARCH (1,1)	0.076	0.037	2.070	0.038
GARCH (1,1)	0.911	0.052	17.400	0.000*
Dynamic Conditional Correlation				
rho	-0.140	0.095	-1.480	0.000
λ_{1}	0.134	0.118	1.140	0.000
λ_{2}	0.003	0.180	0.020	0.001
NRTS and Forex Market Indicators				
	Coefficient	S.E.	Z-statistics	P -value
NRTS and DBOP				
ARCH_NRTS				
ARCH (1,1)	0.092	0.077	1.200	0.003*
GARCH (1,1)	0.757	0.166	4.540	0.000*
ARCH_DBOP				
ARCH (1,1)	-0.056	0.001	-45.110	0.000*
GARCH (1,1)	0.235	0.012	3.530	0.000*
Dynamic Conditional Correlation				
rho	0.055	0.112	0.500	0.000
λ_{1}	0.392	0.201	1.950	0.030
λ_{2}	0.060	0.114	0.530	0.002
NRTS and DFXRE				
ARCH_NRTS				
$\operatorname{ARCH}(1,1)$	0.399	0.210	2.540	0.000*
GARCH (1,1)	-0.189	0.001	-1.880	0.000*
ARCH_DFXRE				
ARCH (1,1)	0.322	0.106	3.040	0.002*
GARCH (1,1)	0.691	0.084	8.200	0.000*
Dynamic Conditional Correlation				
rho	0.115	0.107	1.070	0.020
λ_{1}	0.411	0.099	4.120	0.000
λ_{2}	0.003	0.062	0.050	0.009
NRTS and DFXRA				
ARCH_NRTS				
$\operatorname{ARCH}(1,1)$	0.482	0.151	3.190	0.001*
GARCH (1,1)	-0.196	0.015	-1.980	0.000*
ARCH_DFXRA				
ARCH (1,1)	0.526	0.175	2.990	0.003*
GARCH (1,1)	0.462	0.093	4.930	0.000*
Dynamic Conditional Correlation				
rho	-0.419	0.092	-4.540	0.000
λ_{1}	0.280	0.125	2.230	0.025
λ_{2}	0.092	0.215	0.430	0.006
NRTS and Money Market Indicators				
	Coefficient	S.E.	Z-statistics	P -value
NRTS and DRPR				
ARCH_NRTS				
ARCH (1,1)	0.334	0.044	7.530	0.000*
GARCH (1,1)	-0.296	0.042	-6.950	0.000*
ARCH_DRPR				
ARCH (1,1)	1.470	0.480	3.320	0.000*
GARCH (1,1)	-0.007	0.001	-0.050	0.000*
Dynamic Conditional Correlation				
rho	0.270	0.109	2.470	0.013

λ_{1}	0.549	0.123	4.440	0.000
λ_{2}	0.001	0.013	0.070	0.001
NRTS and DTBR				
ARCH_NRTS				
ARCH (1,1)	0.383	0.160	3.820	0.004*
GARCH (1,1)	-0.278	0.077	-3.570	0.000*
ARCH_DTBR				
ARCH (1,1)	0.448	0.109	4.090	0.000*
GARCH (1,1)	-0.018	0.189	-0.100	0.023
Dynamic Conditional Correlation				
rho	0.097	0.120	0.810	0.042
λ_{1}	0.473	0.097	4.870	0.000
λ_{2}	0.013	0.156	0.080	0.003
NRTS and DPLR				
ARCH_NRTS				
ARCH (1,1)	0.244	0.058	5.730	0.000*
GARCH (1,1)	-0.877	0.042	-5.950	0.000*
ARCH_DPLR				
ARCH (1,1)	3.890	0.620	8.120	0.000*
GARCH (1,1)	-0.000	0.004	-0.030	0.000*
Dynamic Conditional Correlation				
rho	-0.031	0.139	-0.230	0.008
λ_{1}	0.473	0.396	1.190	0.023
λ_{2}	0.009	0.059	0.160	0.008
NRTS and Stock Market Indicators				
	Coefficient	S.E.	Z-statistics	P -value
NRTS and FII				
ARCH_NRTS				
ARCH (1,1)	0.423	0.054	5.230	0.000*
GARCH (1,1)	-0.221	0.048	-4.950	0.000*
ARCH_FII				
ARCH (1,1)	0.625	0.132	4.720	0.000*
GARCH (1,1)	0.572	0.070	8.080	0.000*
Dynamic Conditional Correlation				
rho	0.611	0.091	6.650	0.000
λ_{1}	0.493	0.147	3.350	0.001
λ_{2}	0.158	0.323	0.490	0.024
NRTS and DTRV				
ARCH_NRTS				
ARCH (1,1)	0.342	0.099	3.190	0.000*
GARCH (1,1)	0.048	0.032	0.030	0.000*
ARCH_DTRV				
ARCH (1,1)	0.513	0.071	6.480	0.000*
GARCH (1,1)	0.433	0.029	8.220	0.000*
Dynamic Conditional Correlation				
rho	0.141	0.032	2.962	0.000
λ_{1}	0.051	0.073	0.670	0.000
λ_{2}	0.574	0.223	1.800	0.000
NRTS and DMCP				
ARCH_NRTS				
ARCH (1,1)	0.352	0.109	3.230	0.001*
GARCH (1,1)	0.059	0.042	0.050	0.000*
ARCH_DMCP				
ARCH (1,1)	0.613	0.082	7.480	0.000*
GARCH (1,1)	0.443	0.043	10.200	0.000*
Dynamic Conditional Correlation				
rho	0.831	0.024	33.630	0.000
λ_{1}	0.054	0.083	0.650	0.051
λ_{2}	0.594	0.313	1.900	0.058
NRTS and Commodity Market Indicators				
	Coefficient	S.E.	Z-statistics	P -value
NRTS and DCRO				
ARCH_NRTS				
ARCH (1,1)	0.346	0.092	2.910	0.000*
GARCH (1,1)	-0.249	0.058	-4.270	0.000*
ARCH_DCRO				
ARCH (1,1)	0.488	0.135	3.610	0.000*
GARCH (1,1)	0.244	0.220	1.110	0.008*
Dynamic Conditional Correlation				
rho	0.250	0.108	2.300	0.021
λ_{1}	0.290	0.106	2.730	0.006

λ_{2}	0.234	0.211	1.110	0.007
NRTS and DGLD				
ARCH_NRTS				
ARCH (1,1)	0.438	0.101	3.820	0.000*
$\operatorname{GARCH}(1,1)$	-0.290	0.032	-4.910	0.000*
ARCH_DGLD				
ARCH (1,1)	0.400	0.102	3.900	0.000*
GARCH (1,1)	0.619	0.081	7.580	0.000*
Dynamic Conditional Correlation				
rho	0.112	0.110	1.020	0.030
λ_{1}	0.349	0.116	3.000	0.003
λ_{2}	0.066	0.406	0.160	0.008
NRTS and DDSLV				
ARCH_NRTS				
ARCH (1,1)	0.400	0.103	3.860	0.000*
$\operatorname{GARCH}(1,1)$	-0.215	0.042	-5.130	0.000*
ARCH_DDSLV				
ARCH (1,1)	0.404	0.143	2.820	0.005*
$\operatorname{GARCH}(1,1)$	0.543	0.086	6.300	0.000*
Dynamic Conditional Correlation				
rho	0.116	0.098	1.190	0.023
λ_{1}	0.125	0.107	1.160	0.025
λ_{2}	0.429	0.608	0.710	0.042

Notes: [*] denotes rejection of null hypothesis at 99% confidence level.

Predictions

Results for estimations (within the sample - from April 1999 to March 2011) and the predictions (out of the sample - from April 2011 to March 2015) of variations in NRTS due to selected macroeconomic indicators (group wise) based on DCC MGARCH models are presented through figure 1 to 5 . These figures show estimations and predictions of NRTS based on past behaviour of itself, and the variations in selected independent variables (group wise).

Figure 1: Predictions for NRTS due to Real Economy Indicators

Figure 2: Predictions for NRTS due to Forex Market Indicators

Figure 3: Predictions for NRTS due to Money Market Indicators

Figure 4: Predictions for NRTS due to Stock Market Indicators

Figure 5: Predictions for NRTS due to Commodity Market Indicators
Figure 1 shows that predicted values of NRTS are much closer to the values of DWPI and DIIP. The behaviour of NRTS is significantly different from DGDP. Thus, it can be concluded that the DWPI and DIIP are much better predictors of NRTS than the DGDP. Figure 2 shows that among Forex market indicators, DFXRA is only better predictor of NRTS. It is much closer to NRTS as compared to DFXRE and DBOP. Figure 3 indicates that none of the money market indicators is favorable for predicting stock returns at NSE. Among stock market indicators (figure 4) FII and DTRV are much closer to NRTS, hence better predictors of NRTS. Predictions and estimations for NRTS due to commodity market indicators presented through figure 5 indicate that the behaviour of DGLD and DDSLV is different from the real behavior of NRTS. However, DCRO proves favorable for predicting the behavior of NRTS, as movements in

DCRO are much closer to the movements in NRTS.

CONCLUSION

This paper is an attempt to trace the impact of macroeconomic determinants on the stock market volatility by using econometrics techniques. In the process, variables as described in the stock market function are first tested for unit root and stationary and then causal links among macroeconomic determinants and stock market are explored by applying Granger causality in both the bi-variate and multivariate VAR framework. The Multivariate GARCH models developed for predicting NRTS affected due to variations in various sets of macroeconomic variables indicate that though these models are capable of measuring the impact of changes in one/ set of series on the other series of same amplitude. It is important to mention here that the econometrics techniques used to predict the behaviour of stock market due to selected macroeconomic indicators are suitable in short period only, because predicted values of all the variables became constant after six months.

BIBLIOGRAPHICAL NOTES

The basic econometric concepts, like, unit root testing, vector auto regression etc. are learned from the books on Econometrics by Gujarati (2011, 2004), Bisgaard and Kulahci (2011), Mills and Markellos (2010), Dougherty (2007) and Madalla (2001). The econometric techniques used for modeling the stock market volatility are taken from the books on Stock Market Volatility by Gregoriou (2009) and Hol (2003). The concept of Multivariate GARCH, types of MGARCH, e.g. diagonal VECH MGARCH, constant conditional correlation MGARCH, dynamic conditional correlation MGARCH, and varying conditional correlation MGARCH are taken from the literature of Engle (1982), Bollerslev, Engle, and Wooldridge (1988), Bollerslev (1990), Engle (2002), and Tse and Tsui (2002). A classical reference on the GARCH Models is the book by Francq and Zakoian (2010). The analysis work is carried out using STATA SE 12.0 software - Release 12.

REFERENCES

Adam, A. M, \& Tweneboah, G. (2008). Do macroeconomic variables play any role in the stock market movement in Ghana? MPRA Paper 9357, University Library of Munich, Germany, revised 2008 Online at http://mpra.ub.uni-muenchen.de/9357/.
Ali, I., Rehman, K. U., Yilmaz, A. K., Khan, M. A., \& Afzal, H. (2010). Causal relationship between macro-economic indicators and stock exchange prices in Pakistan. African Journal of Business Management. 4(3), 312319.

Asaolu, T. O., \& Ogunmuyiwa, M. S. (2011). An econometric analysis of the impact of macroeconomic variables on stock market movement in Nigeria. Asian Journal of Business Management. 3(1), 72-78.
Bisgaard, S., \& Kulahci, M. (2011). Time series analysis and forecasting by example. New Jersey, NJ: John Wiley and Sons, Inc.
Bollerslev T. (1990). Modeling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. Review of Economics and Statistics 72: 498-505.

Bollerslev, T., Engle, R. F., \& Wooldridge, J. (1988). A capital asset pricing model with time-varying covariances. Journal of Political Economy. 96, 116-131.

Corradi, V. \& Distaso, W. (2009). Macroeconomic determinants of stock market volatility and volatility risk-premia, working paper, London School of Economics, London.
Diebold, F. X., \& Yilmaz, K. (2008). Macroeconomic Volatility and Stock Market Volatility, Worldwide. Working Paper 14269, National Bureau of Economic Research, Cambridge, MA.
Dougherty, C. (2007). Introduction to econometrics (${ }^{\text {rd }}$ ed.). New York, NY: Oxford University Press.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica. 50, 987-1008.

Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economic Statistics. 20, 339350.

Francq, C., \& Zakoian, J. M. (2010). GARCH models: Structure, statistical inference and financial applications. England, UK: John Wiley and Sons Ltd.

Granger, C. W. J. (1969). Investigating causal relations by econometric models and crossspectral methods. Econometrica. 63, 265-79.

Gregoriou, G. N. (2009), Stock market volatility. London, UK: CRC Press.
Gujarati, N. D. (2004).Basic econometrics (4 ${ }^{\text {th }}$ ed.). New Delhi, India: Tata McGraw Hill Publishing Company Ltd.
Hol, E. M.J. H., (2003), Empirical studies on volatility in international stock markets. Boston, UK: Kluwer Academic Publishers.

Humpe, A. \& Macmillan, P. (2007). Can macroeconomic variables explain long term stock market movements? A comparison of the US and Japan, CDMA Working Paper No. 07/20.
Kumar, B., \& Singh, P. (2009). The dynamic relationship between stock returns, trading volume and volatility: Evidence from Indian stock market. Retrieved from xa.yimg.com/kq/groups/22485914/ name/res_paper_final226.pdf.
Kumar, N. P., \& Puja, P. (2012). The impact of Macroeconomic Fundamentals on Stock Prices revisited: An Evidence from Indian Data, MPRA Working Paper No. 38980. University Library of Munich, Germany.
Flad, M. (2006). Do macroeconomic factors help forecasting stock market volatility? Doi=10.1.1.122.1408, Retrieved from www.econ.ku.dk/Events_News/Zeuthen/200 6/06/Flad_ 2006.

Maddala, G. S. (2001), Introduction to econometrics (${ }^{\text {rd }}$ ed.). England, UK: John Wiley and Sons.
Maysami, R.C., Howe, L.C. \& Hamaz, M.A. (2004). Relationship between macroeconomic variables and stock market indices: cointegration evidence from stock exchange of Singapore's all-s sector indices, Journal Penguruson, 24, 47-77.

Mills, T. C., \& Markellos, R. N. (2010). The econometric modelling of financial time series ($3^{\text {rd }}$ ed.). Cambridge, USA: Cambridge University Press.

Bhattacharya, B., \& Mukherjee, J. (2001). Causal relationship between stock market and exchange rate, foreign exchange reserves and value of trade balance. Akron Business and Economic review. 12, 7-12.
Bhattacharyya, B. \& Mukherjee, J. (2006). Indian stock price movement and the macroeconomic context - a time series analysis, Journal of International Business and Economics. 5 (1), 167-181.

Sharma, G. D., \& Mahendru, M. (2010). Impact of macro-economic variables on stock prices in India. Global Journal of Management and Business Research, 10(7), 19-26.
Tse, Y. K., \& Tsui, A. K. C. (2002). A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business and Economic Statistics. 20, 351-362.

